Advertisement
Review Article| Volume 26, P201-212, October 2008

Anesthetic-induced Neuroprotection: a Review

  • David E. Traul
    Affiliations
    Department of Anesthesiology, University of Virginia Health System, P.O. Box 800710, Charlottesville, VA 22908, USA
    Search for articles by this author
  • Zhiyi Zuo
    Affiliations
    Department of Anesthesiology, University of Virginia Health System, P.O. Box 800710, Charlottesville, VA 22908, USA

    Department of Neurosurgery, University of Virginia Health System, P.O. Box 800710, Charlottesville, VA 22908, USA

    Department of Neuroscience, University of Virginia Health System, P.O. Box 800710, Charlottesville, VA 22908, USA
    Search for articles by this author
  • Thomas N. Pajewski
    Correspondence
    Corresponding author.
    Affiliations
    Department of Anesthesiology, University of Virginia Health System, P.O. Box 800710, Charlottesville, VA 22908, USA

    Department of Neurosurgery, University of Virginia Health System, P.O. Box 800710, Charlottesville, VA 22908, USA
    Search for articles by this author
      Many surgeries present ischemic risk to the brain. For example, the rate of brain ischemia after major cardiac surgery ranges between 3%–6% and the occurrence of brain ischemia greatly increases the length of hospital stay, the cost of care, and overall mortality [
      • McKhann G.M.
      • Grega M.A.
      • Borowicz Jr., L.M.
      • et al.
      Stroke and encephalopathy after cardiac surgery: an update.
      ]. Therefore, there is great interest in the potential use of pharmacologic and nonpharmacologic measures to reduce neurologic sequelae in the growing patient population at risk for ischemic brain injury secondary to either cardiovascular comorbidities, such as atrial fibrillation, or high-risk procedures including cardiac surgery and intracranial aneurysm clipping. It is scientifically and practically important to determine whether anesthetics are neuroprotective. Unfortunately, controversies exist in the efficacy of anesthetics to induce neuroprotection in animal studies. This issue, combined with the lack of controlled human studies, contributes to the difficulty of incorporating laboratory evidence of neuroprotective qualities of anesthetic agents into clinical practice. This article describes current knowledge of the mechanism for ischemic neuronal injury and outlines the potential of anesthetic agents to protect the central nervous system during ischemia.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Anesthesia
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • McKhann G.M.
        • Grega M.A.
        • Borowicz Jr., L.M.
        • et al.
        Stroke and encephalopathy after cardiac surgery: an update.
        Stroke. 2006; 37: 562-571
        • Warner D.S.
        • Takaoka S.
        • Wu B.
        • et al.
        Electroencephalographic burst suppression is not required to elicit maximal neuroprotection from pentobarbital in a rat model of focal cerebral ischemia.
        Anesthesiology. 1996; 84: 1475-1484
        • Schmid-Elsaesser R.
        • Schroder M.
        • Zausinger S.
        • et al.
        EEG burst suppression is not necessary for maximum barbiturate protection in transient focal cerebral ischemia in the rat.
        J Neurol Sci. 1999; 162: 14-19
        • Cole D.J.
        • Cross L.M.
        • Drummond J.C.
        • et al.
        Thiopentone and methohexital, but not pentobarbitone, reduce early focal cerebral ischemic injury in rats.
        Can J Anaesth. 2001; 48: 807-814
        • Markus H.S.
        Cerebral perfusion and stroke.
        J Neurol Neurosurg Psychiatry. 2004; 75: 353-361
        • Harukuni I.
        • Bhardwaj A.
        Mechanisms of brain injury after global cerebral ischemia.
        Neurol Clin. 2006; 24: 1-21
        • Okouchi M.
        • Ekshyyan O.
        • Maracine M.
        • et al.
        Neuronal apoptosis in neurodegeneration.
        Antioxid Redox Signal. 2007; 9: 1059-1096
        • Du C.
        • Hu R.
        • Csernansky C.A.
        • et al.
        Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis?.
        J Cereb Blood Flow Metab. 1996; 16: 195-201
        • Hu X.
        • Johansson I.M.
        • Brannstrom T.
        • et al.
        Long-lasting neuronal apoptotic cell death in regions with severe ischemia after photothrombotic ring stroke in rats.
        Acta Neuropathol. 2002; 104: 462-470
        • Shibuta S.
        • Varathan S.
        • Mashimo T.
        Ketamine and thiopental sodium: individual and combined neuroprotective effects on cortical cultures exposed to NMDA or nitric oxide.
        Br J Anaesth. 2006; 97: 517-524
        • Shibuta S.
        • Kosaka J.
        • Inoue T.
        • et al.
        The influence of the timing of administration of thiopentone sodium on nitric oxide-mediated neurotoxicity in vitro.
        J Neurol Sci. 2000; 174: 9-15
        • Popovic R.
        • Liniger R.
        • Bickler P.E.
        Anesthetics and mild hypothermia similarly prevent hippocampal neuron death in an in vitro model of cerebral ischemia.
        Anesthesiology. 2000; 92: 1343-1349
        • Zhu H.
        • Cottrell J.E.
        • Kass I.S.
        The effect of thiopental and propofol on NMDA- and AMPA-mediated glutamate excitotoxicity.
        Anesthesiology. 1997; 87: 944-951
        • Basagan-Mogol E.
        • Buyukuysal R.L.
        • Korfali G.
        Effects of ketamine and thiopental on ischemia reoxygenation-induced LDH leakage and amino acid release from rat striatal slices.
        J Neurosurg Anesthesiol. 2005; 17: 20-26
        • Varathan S.
        • Shibuta S.
        • Shimizu T.
        • et al.
        Hypothermia and thiopentone sodium: individual and combined neuroprotective effects on cortical cultures exposed to prolonged hypoxic episodes.
        J Neurosci Res. 2002; 68: 352-362
        • Baughman V.L.
        • Hoffman W.E.
        • Thomas C.
        • et al.
        Comparison of methohexital and isoflurane on neurologic outcome and histopathology following incomplete ischemia in rats.
        Anesthesiology. 1990; 72: 85-94
        • Kobayashi M.
        • Takeda Y.
        • Taninishi H.
        • et al.
        Quantitative evaluation of the neuroprotective effects of thiopental sodium, propofol, and halothane on brain ischemia in the gerbil: effects of the anesthetics on ischemic depolarization and extracellular glutamate concentration.
        J Neurosurg Anesthesiol. 2007; 19: 171-178
        • Zausinger S.
        • Westermaier T.
        • Plesnila N.
        • et al.
        Neuroprotection in transient focal cerebral ischemia by combination drug therapy and mild hypothermia: comparison with customary therapeutic regimen.
        Stroke. 2003; 34: 1526-1532
        • Westermaier T.
        • Zausinger S.
        • Baethmann A.
        • et al.
        No additional neuroprotection provided by barbiturate-induced burst suppression under mild hypothermic conditions in rats subjected to reversible focal ischemia.
        J Neurosurg. 2000; 93: 835-844
        • Kimbro J.R.
        • Kelly P.J.
        • Drummond J.C.
        • et al.
        Isoflurane and pentobarbital reduce AMPA toxicity in vivo in the rat cerebral cortex.
        Anesthesiology. 2000; 92: 806-812
        • Jevtovic-Todorovic V.
        • Wozniak D.F.
        • Powell S.
        • et al.
        Propofol and sodium thiopental protect against MK-801-induced neuronal necrosis in the posterior cingulate/retrosplenial cortex.
        Brain Res. 2001; 913: 185-189
        • Weiss M.
        • Buhl R.
        • Birkhahn A.
        • et al.
        Do barbiturates and their solutions suppress FMLP-induced neutrophil chemiluminescence?.
        Eur J Anaesthesiol. 1994; 11: 371-379
        • Nussmeier N.A.
        • Arlund C.
        • Slogoff S.
        Neuropsychiatric complications after cardiopulmonary bypass: cerebral protection by a barbiturate.
        Anesthesiology. 1986; 64: 165-170
        • Zaidan J.R.
        • Klochany A.
        • Martin W.M.
        • et al.
        Effect of thiopental on neurologic outcome following coronary artery bypass grafting.
        Anesthesiology. 1991; 74: 406-411
        • Gray J.J.
        • Bickler P.E.
        • Fahlman C.S.
        • et al.
        Isoflurane neuroprotection in hypoxic hippocampal slice cultures involves increases in intracellular Ca2+ and mitogen-activated protein kinases.
        Anesthesiology. 2005; 102: 606-615
        • Sullivan B.L.
        • Leu D.
        • Taylor D.M.
        • et al.
        Isoflurane prevents delayed cell death in an organotypic slice culture model of cerebral ischemia.
        Anesthesiology. 2002; 96: 189-195
        • Zhan X.
        • Fahlman C.S.
        • Bickler P.E.
        Isoflurane neuroprotection in rat hippocampal slices decreases with aging: changes in intracellular Ca2+ regulation and N-methyl-D-aspartate receptor-mediated Ca2+ influx.
        Anesthesiology. 2006; 104: 995-1003
        • Elsersy H.
        • Mixco J.
        • Sheng H.
        • et al.
        Selective gamma-aminobutyric acid type A receptor antagonism reverses isoflurane ischemic neuroprotection.
        Anesthesiology. 2006; 105: 81-90
        • Wei H.
        • Liang G.
        • Yang H.
        Isoflurane preconditioning inhibited isoflurane-induced neurotoxicity.
        Neurosci Lett. 2007; 425: 59-62
        • Toner C.C.
        • Milne A.J.
        • Blatchford K.L.
        • et al.
        An assessment of the cerebroprotective potential of volatile anaesthetics using two independent methods in an in vitro model of cerebral ischaemia.
        Brain Res. 2002; 958: 390-398
        • Canas P.T.
        • Velly L.J.
        • Labrande C.N.
        • et al.
        Sevoflurane protects rat mixed cerebrocortical neuronal-glial cell cultures against transient oxygen-glucose deprivation: involvement of glutamate uptake and reactive oxygen species.
        Anesthesiology. 2006; 105: 990-998
        • Zuo Z.
        • Wang Y.
        • Huang Y.
        Isoflurane preconditioning protects human neuroblastoma SH-SY5Y cells against in vitro simulated ischemia-reperfusion through the activation of extracellular signal-regulated kinases pathway.
        Eur J Pharmacol. 2006; 542: 84-91
        • Wang C.
        • Jin Lee J.
        • Jung H.H.
        • et al.
        Pretreatment with volatile anesthetics, but not with the nonimmobilizer 1,2-dichlorohexafluorocyclobutane, reduced cell injury in rat cerebellar slices after an in vitro simulated ischemia.
        Brain Res. 2007; 1152: 201-208
        • Zheng S.
        • Zuo Z.
        Isoflurane preconditioning decreases glutamate receptor overactivation-induced Purkinje neuronal injury in rat cerebellar slices.
        Brain Res. 2005; 1054: 143-151
        • Lee J.J.
        • Li L.
        • Jung H.H.
        • et al.
        Postconditioning with isoflurane reduced ischemia-induced brain injury in rats.
        Anesthesiology. 2008; 108: 1055-1062
        • Homi H.M.
        • Mixco J.M.
        • Sheng H.
        • et al.
        Severe hypotension is not essential for isoflurane neuroprotection against forebrain ischemia in mice.
        Anesthesiology. 2003; 99: 1145-1151
        • Patel P.M.
        • Drummond J.C.
        • Cole D.J.
        • et al.
        Isoflurane and pentobarbital reduce the frequency of transient ischemic depolarizations during focal ischemia in rats.
        Anesth Analg. 1998; 86: 773-780
        • Mackensen G.B.
        • Nellgard B.
        • Miura Y.
        • et al.
        Sympathetic ganglionic blockade masks beneficial effect of isoflurane on histologic outcome from near-complete forebrain ischemia in the rat.
        Anesthesiology. 1999; 90: 873-881
        • Kawaguchi M.
        • Drummond J.C.
        • Cole D.J.
        • et al.
        Effect of isoflurane on neuronal apoptosis in rats subjected to focal cerebral ischemia.
        Anesth Analg. 2004; 98 ([table of contents]): 798-805
        • Kawaguchi M.
        • Kimbro J.R.
        • Drummond J.C.
        • et al.
        Isoflurane delays but does not prevent cerebral infarction in rats subjected to focal ischemia.
        Anesthesiology. 2000; 92: 1335-1342
        • Elsersy H.
        • Sheng H.
        • Lynch J.R.
        • et al.
        Effects of isoflurane versus fentanyl-nitrous oxide anesthesia on long-term outcome from severe forebrain ischemia in the rat.
        Anesthesiology. 2004; 100: 1160-1166
        • Haelewyn B.
        • Yvon A.
        • Hanouz J.L.
        • et al.
        Desflurane affords greater protection than halothane against focal cerebral ischaemia in the rat.
        Br J Anaesth. 2003; 91: 390-396
        • Sakai H.
        • Sheng H.
        • Yates R.B.
        • et al.
        Isoflurane provides long-term protection against focal cerebral ischemia in the rat.
        Anesthesiology. 2007; 106 ([discussion: 8–10]): 92-99
        • Zhao P.
        • Zuo Z.
        Isoflurane preconditioning induces neuroprotection that is inducible nitric oxide synthase-dependent in neonatal rats.
        Anesthesiology. 2004; 101: 695-703
        • Zheng S.
        • Zuo Z.
        Isoflurane preconditioning induces neuroprotection against ischemia via activation of P38 mitogen-activated protein kinases.
        Mol Pharmacol. 2004; 65: 1172-1180
        • Zhao P.
        • Peng L.
        • Li L.
        • et al.
        Isoflurane preconditioning improves long-term neurologic outcome after hypoxic-ischemic brain injury in neonatal rats.
        Anesthesiology. 2007; 107: 963-970
        • Toner C.C.
        • Connelly K.
        • Whelpton R.
        • et al.
        Effects of sevoflurane on dopamine, glutamate and aspartate release in an in vitro model of cerebral ischaemia.
        Br J Anaesth. 2001; 86: 550-554
        • Engelhard K.
        • Werner C.
        • Hoffman W.E.
        • et al.
        The effect of sevoflurane and propofol on cerebral neurotransmitter concentrations during cerebral ischemia in rats.
        Anesth Analg. 2003; 97 ([table of contents]): 1155-1161
        • Bickler P.E.
        • Buck L.T.
        • Feiner J.R.
        Volatile and intravenous anesthetics decrease glutamate release from cortical brain slices during anoxia.
        Anesthesiology. 1995; 83: 1233-1240
        • Patel P.M.
        • Drummond J.C.
        • Cole D.J.
        • et al.
        Isoflurane reduces ischemia-induced glutamate release in rats subjected to forebrain ischemia.
        Anesthesiology. 1995; 82: 996-1003
        • Engelhard K.
        • Werner C.
        • Eberspacher E.
        • et al.
        Sevoflurane and propofol influence the expression of apoptosis-regulating proteins after cerebral ischaemia and reperfusion in rats.
        Eur J Anaesthesiol. 2004; 21: 530-537
        • Pape M.
        • Engelhard K.
        • Eberspacher E.
        • et al.
        The long-term effect of sevoflurane on neuronal cell damage and expression of apoptotic factors after cerebral ischemia and reperfusion in rats.
        Anesth Analg. 2006; 103 ([table of contents]): 173-179
        • Inoue S.
        • Davis D.P.
        • Drummond J.C.
        • et al.
        The combination of isoflurane and caspase 8 inhibition results in sustained neuroprotection in rats subject to focal cerebral ischemia.
        Anesth Analg. 2006; 102: 1548-1555
        • Ratnakumari L.
        • Hemmings Jr., H.C.
        Effects of propofol on sodium channel-dependent sodium influx and glutamate release in rat cerebrocortical synaptosomes.
        Anesthesiology. 1997; 86: 428-439
        • Velly L.J.
        • Guillet B.A.
        • Masmejean F.M.
        • et al.
        Neuroprotective effects of propofol in a model of ischemic cortical cell cultures: role of glutamate and its transporters.
        Anesthesiology. 2003; 99: 368-375
        • Feiner J.R.
        • Bickler P.E.
        • Estrada S.
        • et al.
        Mild hypothermia, but not propofol, is neuroprotective in organotypic hippocampal cultures.
        Anesth Analg. 2005; 100: 215-225
        • Adembri C.
        • Venturi L.
        • Tani A.
        • et al.
        Neuroprotective effects of propofol in models of cerebral ischemia: inhibition of mitochondrial swelling as a possible mechanism.
        Anesthesiology. 2006; 104: 80-89
        • Acquaviva R.
        • Campisi A.
        • Murabito P.
        • et al.
        Propofol attenuates peroxynitrite-mediated DNA damage and apoptosis in cultured astrocytes: an alternative protective mechanism.
        Anesthesiology. 2004; 101: 1363-1371
        • Pittman J.E.
        • Sheng H.
        • Pearlstein R.
        • et al.
        Comparison of the effects of propofol and pentobarbital on neurologic outcome and cerebral infarct size after temporary focal ischemia in the rat.
        Anesthesiology. 1997; 87: 1139-1144
        • Young Y.
        • Menon D.K.
        • Tisavipat N.
        • et al.
        Propofol neuroprotection in a rat model of ischaemia reperfusion injury.
        Eur J Anaesthesiol. 1997; 14: 320-326
        • Kochs E.
        • Hoffman W.E.
        • Werner C.
        • et al.
        The effects of propofol on brain electrical activity, neurologic outcome, and neuronal damage following incomplete ischemia in rats.
        Anesthesiology. 1992; 76: 245-252
        • Wang J.
        • Yang X.
        • Camporesi C.V.
        • et al.
        Propofol reduces infarct size and striatal dopamine accumulation following transient middle cerebral artery occlusion: a microdialysis study.
        Eur J Pharmacol. 2002; 452: 303-308
        • Yano T.
        • Nakayama R.
        • Ushijima K.
        Intracerebroventricular propofol is neuroprotective against transient global ischemia in rats: extracellular glutamate level is not a major determinant.
        Brain Res. 2000; 883: 69-76
        • Engelhard K.
        • Werner C.
        • Eberspacher E.
        • et al.
        Influence of propofol on neuronal damage and apoptotic factors after incomplete cerebral ischemia and reperfusion in rats: a long-term observation.
        Anesthesiology. 2004; 101: 912-917
        • Roach G.W.
        • Newman M.F.
        • Murkin J.M.
        • et al.
        Ineffectiveness of burst suppression therapy in mitigating perioperative cerebrovascular dysfunction. Multicenter Study of Perioperative Ischemia (McSPI) Research Group.
        Anesthesiology. 1999; 90: 1255-1264
        • Takeshita H.
        • Okuda Y.
        • Sari A.
        The effects of ketamine on cerebral circulation and metabolism in man.
        Anesthesiology. 1972; 36: 69-75
        • Himmelseher S.
        • Durieux M.E.
        Revising a dogma: ketamine for patients with neurological injury?.
        Anesth Analg. 2005; 101 ([table of contents]): 524-534
        • Himmelseher S.
        • Pfenninger E.
        • Georgieff M.
        The effects of ketamine-isomers on neuronal injury and regeneration in rat hippocampal neurons.
        Anesth Analg. 1996; 83: 505-512
        • Himmelseher S.
        • Pfenninger E.
        • Kochs E.
        • et al.
        S(+)-ketamine up-regulates neuronal regeneration associated proteins following glutamate injury in cultured rat hippocampal neurons.
        J Neurosurg Anesthesiol. 2000; 12: 84-94
        • Church J.
        • Zeman S.
        • Lodge D.
        The neuroprotective action of ketamine and MK-801 after transient cerebral ischemia in rats.
        Anesthesiology. 1988; 69: 702-709
        • Hoffman W.E.
        • Pelligrino D.
        • Werner C.
        • et al.
        Ketamine decreases plasma catecholamines and improves outcome from incomplete cerebral ischemia in rats.
        Anesthesiology. 1992; 76: 755-762
        • Kubota T.
        • Anzawa N.
        • Hirota K.
        • et al.
        Effects of ketamine and pentobarbital on noradrenaline release from the medial prefrontal cortex in rats.
        Can J Anaesth. 1999; 46: 388-392
        • Proescholdt M.
        • Heimann A.
        • Kempski O.
        Neuroprotection of S(+) ketamine isomer in global forebrain ischemia.
        Brain Res. 2001; 904: 245-251
        • Reeker W.
        • Werner C.
        • Mollenberg O.
        • et al.
        High-dose S(+)-ketamine improves neurological outcome following incomplete cerebral ischemia in rats.
        Can J Anaesth. 2000; 47: 572-578
        • Nagels W.
        • Demeyere R.
        • Van Hemelrijck J.
        • et al.
        Evaluation of the neuroprotective effects of S(+)-ketamine during open-heart surgery.
        Anesth Analg. 2004; 98 ([table of contents]): 1595-1603
        • Werner C.
        • Hoffman W.E.
        • Thomas C.
        • et al.
        Ganglionic blockade improves neurologic outcome from incomplete ischemia in rats: partial reversal by exogenous catecholamines.
        Anesthesiology. 1990; 73: 923-929
        • Hoffman W.E.
        • Kochs E.
        • Werner C.
        • et al.
        Dexmedetomidine improves neurologic outcome from incomplete ischemia in the rat. Reversal by the alpha 2-adrenergic antagonist atipamezole.
        Anesthesiology. 1991; 75: 328-332
        • Engelhard K.
        • Werner C.
        • Kaspar S.
        • et al.
        Effect of the alpha2-agonist dexmedetomidine on cerebral neurotransmitter concentrations during cerebral ischemia in rats.
        Anesthesiology. 2002; 96: 450-457
        • Engelhard K.
        • Werner C.
        • Eberspacher E.
        • et al.
        The effect of the alpha 2-agonist dexmedetomidine and the N-methyl-D-aspartate antagonist S(+)-ketamine on the expression of apoptosis-regulating proteins after incomplete cerebral ischemia and reperfusion in rats.
        Anesth Analg. 2003; 96 ([table of contents]): 524-531
        • Wilhelm S.
        • Ma D.
        • Maze M.
        • et al.
        Effects of xenon on in vitro and in vivo models of neuronal injury.
        Anesthesiology. 2002; 96: 1485-1491
        • Homi H.M.
        • Yokoo N.
        • Ma D.
        • et al.
        The neuroprotective effect of xenon administration during transient middle cerebral artery occlusion in mice.
        Anesthesiology. 2003; 99: 876-881
        • Ma D.
        • Hossain M.
        • Chow A.
        • et al.
        Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia.
        Ann Neurol. 2005; 58: 182-193
        • Hobbs C.
        • Thoresen M.
        • Tucker A.
        • et al.
        Xenon and hypothermia combine additively, offering long-term functional and histopathologic neuroprotection after neonatal hypoxia/ischemia.
        Stroke. 2008; 39: 1307-1313
        • David H.N.
        • Haelewyn B.
        • Rouillon C.
        • et al.
        Neuroprotective effects of xenon: a therapeutic window of opportunity in rats subjected to transient cerebral ischemia.
        FASEB J. 2008; 22: 1275-1286
        • Weber N.C.
        • Toma O.
        • Wolter J.I.
        • et al.
        The noble gas xenon induces pharmacological preconditioning in the rat heart in vivo via induction of PKC-epsilon and p38 MAPK.
        Br J Pharmacol. 2005; 144: 123-132
        • Heurteaux C.
        • Guy N.
        • Laigle C.
        • et al.
        TREK-1, a K+ channel involved in neuroprotection and general anesthesia.
        EMBO J. 2004; 23: 2684-2695