Advertisement
Review Article| Volume 30, ISSUE 1, P75-96, 2012

Anesthetic Considerations for Robotic Surgery in the Steep Trendelenburg Position

Published:September 17, 2012DOI:https://doi.org/10.1016/j.aan.2012.07.003
      Because of the excellent results, it can be predicted that an increasing number of patients will undergo robot-assisted procedures with CO2 pneumoperitoneum (PP) and steep Trendelenburg position. Fortunately, the human body has a remarkable yet incompletely understood capacity to withstand the effects of a CO2 PP and steep Trendelenburg position during general anesthesia.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Anesthesia
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Available at: http://www.olvroboticsurgeryinstitute.eu/olv.

        • Cassorla L.
        • Lee J.W.
        Patient positioning and anesthesia.
        in: Ronald D. Miller Anesthesia. Churchill Livingstone, New York, London2009: 1819-1887
        • Phong S.V.
        • Koh L.K.
        Anaesthesia for robotic-assisted radical prostatectomy: considerations for laparoscopy in the Trendelenburg position.
        Anaesth Intensive Care. 2007; 35: 281-285
        • Deras P.
        • Amraoui J.
        • Boutin C.
        • et al.
        Ann Fr Anesth Reanim. 2010; 29 ([in French]): 301-303
        • Jones M.J.
        • Mitchell R.W.
        • Hindocha N.
        Effect of increased intra-abdominal pressure during laparoscopy on the lower esophageal sphincter.
        Anesth Analg. 1989; 68: 63-65
        • Joris J.
        Anesthesia for laparoscopic surgery.
        in: Ronald D. Miller Anesthesia. Churchill Livingstone, New York, London2009: 2185-2202
        • Burton A.
        • Steinbrook R.A.
        Precipitous decrease in oxygen saturation during laparoscopic surgery.
        Anesth Analg. 1993; 76: 1177-1178
        • Morimura N.
        • Inoue K.
        • Miwa T.
        Chest roentgenogram demonstrates cephalad movement of the carina during laparoscopic cholecystectomy.
        Anesthesiology. 1994; 81: 1301-1302
        • Nakajima Y.
        • Mizobe T.
        • Matsukawa T.
        • et al.
        Thermoregulatory response to intraoperative head-down tilt.
        Anesth Analg. 2002; 94 (table of contents): 221-226
        • Lestar M.
        • Gunnarsson L.
        • Lagerstrand L.
        • et al.
        Hemodynamic perturbations during robot-assisted laparoscopic radical prostatectomy in 45 degrees Trendelenburg position.
        Anesth Analg. 2011; 113: 1069-1075
        • Joris J.L.
        • Noirot D.P.
        • Legrand M.J.
        • et al.
        Hemodynamic changes during laparoscopic cholecystectomy.
        Anesth Analg. 1993; 76: 1067-1071
        • Sharma K.C.
        • Brandstetter R.D.
        • Brensilver J.M.
        • et al.
        Cardiopulmonary physiology and pathophysiology as a consequence of laparoscopic surgery.
        Chest. 1996; 110: 810-815
        • Viinamki O.
        • Punnonen R.
        Vasopressin release during laparoscopy: role of increased intra-abdominal pressure.
        Lancet. 1982; 1: 175-176
        • Valenza F.
        • Chevallard G.
        • Porro G.A.
        • et al.
        Static and dynamic components of esophageal and central venous pressure during intra-abdominal hypertension.
        Crit Care Med. 2007; 35: 1575-1581
        • Valenza F.
        • Chevallard G.
        • Fossali T.
        • et al.
        Management of mechanical ventilation during laparoscopic surgery.
        Best Pract Res Clin Anaesthesiol. 2010; 24: 227-241
        • Tan P.L.
        • Lee T.L.
        • Tweed W.A.
        Carbon dioxide absorption and gas exchange during pelvic laparoscopy.
        Can J Anaesth. 1992; 39: 677-681
        • Schrijvers D.
        • Mottrie A.
        • Traen K.
        • et al.
        Pulmonary gas exchange is well preserved during robot assisted surgery in steep Trendelenburg position.
        Acta Anaesthesiol Belg. 2009; 60: 229-233
        • Lumb A.
        Nunn's applied respiratory physiology.
        6th edition. Butterworth-Heinemann, 2005
        • Bures E.
        • Fusciardi J.
        • Lanquetot H.
        • et al.
        Ventilatory effects of laparoscopic cholecystectomy.
        Acta Anaesthesiol Scand. 1996; 40: 566-573
        • Odeberg-Wernerman S.
        • Sollevi A.
        Cardiopulmonary aspects of laparoscopic surgery.
        Curr Opin Anaesthesiol. 1996; 9: 529-535
        • Andersson L.E.
        • Baath M.
        • Thorne A.
        • et al.
        Effect of carbon dioxide pneumoperitoneum on development of atelectasis during anesthesia, examined by spiral computed tomography.
        Anesthesiology. 2005; 102: 293-299
        • Andersson L.
        • Lagerstrand L.
        • Thorne A.
        • et al.
        Effect of CO2 pneumoperitoneum on ventilation-perfusion relationships during laparoscopic cholecystectomy.
        Acta Anaesthesiol Scand. 2002; 46: 552-560
        • Kelman G.R.
        • Swapp G.H.
        • Smith I.
        • et al.
        Caridac output and arterial blood-gas tension during laparoscopy.
        Br J Anaesth. 1972; 44: 1155-1162
        • Odeberg S.
        • Sollevi A.
        Pneumoperitoneum for laparoscopic surgery does not increase venous admixture.
        Eur J Anaesthesiol. 1995; 12: 541-548
        • McMahon A.J.
        • Baxter J.N.
        • Kenny G.
        • et al.
        Ventilatory and blood gas changes during laparoscopic and open cholecystectomy.
        Br J Surg. 1993; 80: 1252-1254
        • Wahba R.W.
        • Mamazza J.
        Ventilatory requirements during laparoscopic cholecystectomy.
        Can J Anaesth. 1993; 40: 206-210
        • Bruells C.S.
        • Rossaint R.
        Physiology of gas exchange during anaesthesia.
        Eur J Anaesthesiol. 2011; 28: 570-579
        • Hedenstierna G.
        • Edmark L.
        The effects of anesthesia and muscle paralysis on the respiratory system.
        in: Pinsky M. Brochard L. Mancebo J. Applied physiology in intensive care medicine. Springer-Verlag, Dordrecht (The Netherlands), Heidelberg (Germany), London, New York2009: 390
        • Pelosi P.
        • Ravagnan I.
        • Giurati G.
        • et al.
        Positive end-expiratory pressure improves respiratory function in obese but not in normal subjects during anesthesia and paralysis.
        Anesthesiology. 1999; 91: 1221-1231
        • De Baerdemaeker L.E.
        • Van der Herten C.
        • Gillardin J.M.
        • et al.
        Comparison of volume-controlled and pressure-controlled ventilation during laparoscopic gastric banding in morbidly obese patients.
        Obes Surg. 2008; 18: 680-685
        • Balick-Weber C.C.
        • Nicolas P.
        • Hedreville-Montout M.
        • et al.
        Respiratory and haemodynamic effects of volume-controlled vs pressure-controlled ventilation during laparoscopy: a cross-over study with echocardiographic assessment.
        Br J Anaesth. 2007; 99: 429-435
        • Choi E.M.
        • Na S.
        • Choi S.H.
        • et al.
        Comparison of volume-controlled and pressure-controlled ventilation in steep Trendelenburg position for robot-assisted laparoscopic radical prostatectomy.
        J Clin Anesth. 2011; 23: 183-188
        • Lister D.R.
        • Rudston-Brown B.
        • Warriner C.B.
        • et al.
        Carbon dioxide absorption is not linearly related to intraperitoneal carbon dioxide insufflation pressure in pigs.
        Anesthesiology. 1994; 80: 129-136
        • Ng J.L.
        • Chan M.T.
        • Gelb A.W.
        Perioperative stroke in noncardiac, nonneurosurgical surgery.
        Anesthesiology. 2011; 115: 879-890
        • Kalmar A.F.
        • Foubert L.
        • Hendrickx J.F.
        • et al.
        Influence of steep Trendelenburg position and CO2 pneumoperitoneum on cardiovascular, cerebrovascular, and respiratory homeostasis during robotic prostatectomy.
        Br J Anaesth. 2010; 104: 433-439
        • Halverson A.
        • Buchanan R.
        • Jacobs L.
        • et al.
        Evaluation of mechanism of increased intracranial pressure with insufflation.
        Surg Endosc. 1998; 12: 266-269
        • Josephs L.G.
        • Este-McDonald J.R.
        • Birkett D.H.
        • et al.
        Diagnostic laparoscopy increases intracranial pressure.
        J Trauma. 1994; 36 ([discussion: 818–9]): 815-818
        • Rosenthal R.J.
        • Hiatt J.R.
        • Phillips E.H.
        • et al.
        Intracranial pressure. Effects of pneumoperitoneum in a large-animal model.
        Surg Endosc. 1997; 11: 376-380
        • Grabowski J.E.
        • Talamini M.A.
        Physiological effects of pneumoperitoneum.
        J Gastrointest Surg. 2009; 13: 1009-1016
        • Este-McDonald J.R.
        • Josephs L.G.
        • Birkett D.H.
        • et al.
        Changes in intracranial pressure associated with apneumic retractors.
        Arch Surg. 1995; 130 ([discussion: 365–6]): 362-365
        • Kalmar A.F.
        • Dewaele F.
        • Foubert L.
        • et al.
        Cerebral haemodynamic physiology during steep Trendelenburg position and CO2 pneumoperitoneum.
        Br J Anaesth. 2012; 108: 478-484
        • Shimoyama R.
        • Miyata H.
        • Ohama E.
        • et al.
        Does edema formation occur in the rabbit brain exposed to head-down tilt?.
        Jpn J Physiol. 2000; 50: 141-147
        • Pandey R.
        • Garg R.
        • Darlong V.
        • et al.
        Unpredicted neurological complications after robotic laparoscopic radical cystectomy and ileal conduit formation in steep trendelenburg position: two case reports.
        Acta Anaesthesiol Belg. 2010; 61: 163-166
        • Awad H.
        • Santilli S.
        • Ohr M.
        • et al.
        The effects of steep trendelenburg positioning on intraocular pressure during robotic radical prostatectomy.
        Anesth Analg. 2009; 109: 473-478
        • de Barros R.F.
        • Miranda M.L.
        • de Mattos A.C.
        • et al.
        Kidney safety during surgical pneumoperitoneum: an experimental study in rats.
        Surg Endosc. 2012; (Available at:)
        • Knos G.B.
        • Berry A.J.
        • Isaacson I.J.
        • et al.
        Intraoperative urinary output and postoperative blood urea nitrogen and creatinine levels in patients undergoing aortic reconstructive surgery.
        J Clin Anesth. 1989; 1: 181-185
        • Alpert R.A.
        • Roizen M.F.
        • Hamilton W.K.
        • et al.
        Intraoperative urinary output does not predict postoperative renal function in patients undergoing abdominal aortic revascularization.
        Surgery. 1984; 95: 707-711
        • Brodsky J.B.
        • Lemmens H.J.
        • Collins J.S.
        • et al.
        Nitrous oxide and laparoscopic bariatric surgery.
        Obes Surg. 2005; 15: 494-496
        • Parazynski S.E.
        • Hargens A.R.
        • Tucker B.
        • et al.
        Transcapillary fluid shifts in tissues of the head and neck during and after simulated microgravity.
        J Appl Physiol. 1991; 71: 2469-2475