Advertisement

Are Surgical Site Infections an Anesthesiologist's Problem?

Published:September 01, 2021DOI:https://doi.org/10.1016/j.aan.2021.07.001
      Antibiotic prophylaxis should achieve minimum inhibitory concentration for the duration of surgery, which includes preoperative administration 0 to 60 minutes before incision and intraoperative redosing after two half-lives have passed.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Anesthesia
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Consensus paper on the surveillance of surgical wound infections. The Society for Hospital Epidemiology of America; the Association for Practitioners in Infection Control; the Centers for Disease Control; the Surgical Infection Society.
        Infect Control Hosp Epidemiol. 1992; 13: 599-605
        • Horan T.C.
        • Gaynes R.P.
        • Martone W.J.
        • et al.
        CDC definitions of nosocomial surgical site infections, 1992: a modification of CDC definitions of surgical wound infections.
        Am J Infect Control. 1992; 20: 271-274
        • Shepard J.
        • Ward W.
        • Milstone A.
        • et al.
        Financial impact of surgical site infections on hospitals: the hospital management perspective.
        JAMA Surg. 2013; 148: 907-914
        • Badia J.M.
        • Casey A.L.
        • Petrosillo N.
        • et al.
        Impact of surgical site infection on healthcare costs and patient outcomes: a systematic review in six European countries.
        J Hosp Infect. 2017; 96: 1-15
        • Korol E.
        • Johnston K.
        • Waser N.
        • et al.
        A systematic review of risk factors associated with surgical site infections among surgical patients.
        PLoS One. 2013; 8: e83743
        • Bratzler D.W.
        • Dellinger E.P.
        • Olsen K.M.
        • et al.
        Clinical practice guidelines for antimicrobial prophylaxis in surgery.
        Am J Health Syst Pharm. 2013; 70: 195-283
        • van Kasteren M.E.
        • Manniën J.
        • Ott A.
        • et al.
        Antibiotic prophylaxis and the risk of surgical site infections following total hip arthroplasty: timely administration is the most important factor.
        Clin Infect Dis. 2007; 44: 921-927
        • Classen D.C.
        • Evans R.S.
        • Pestotnik S.L.
        • et al.
        The timing of prophylactic administration of antibiotics and the risk of surgical-wound infection.
        N Engl J Med. 1992; 326: 281-286
        • Hawn M.T.
        • Richman J.S.
        • Vick C.C.
        • et al.
        Timing of surgical antibiotic prophylaxis and the risk of surgical site infection.
        JAMA Surg. 2013; 148: 649-657
        • Maier W.
        • Strutz J.
        Concentration of cephalosporins in tissues of the head and neck after parenteral infusion.
        Chemotherapy. 1995; 41: 421-426
        • Weber W.P.
        • Marti W.R.
        • Zwahlen M.
        • et al.
        The timing of surgical antimicrobial prophylaxis.
        Ann Surg. 2008; 247: 918-926
        • Engelman R.
        • Shahian D.
        • Shemin R.
        • et al.
        The Society of Thoracic Surgeons practice guideline series: antibiotic prophylaxis in cardiac surgery, part II: antibiotic choice.
        Ann Thorac Surg. 2007; 83: 1569-1576
        • Garey K.W.
        • Dao T.
        • Chen H.
        • et al.
        Timing of vancomycin prophylaxis for cardiac surgery patients and the risk of surgical site infections.
        J Antimicrob Chemother. 2006; 58: 645-650
        • Cotogni P.
        • Barbero C.
        • Passera R.
        • et al.
        Violation of prophylactic vancomycin administration timing is a potential risk factor for rate of surgical site infections in cardiac surgery patients: a prospective cohort study.
        BMC Cardiovasc Disord. 2017; 17: 73
        • O'Hara L.M.
        • Thom K.A.
        • Preas M.A.
        Update to the Centers for Disease Control and Prevention and the Healthcare Infection Control Practices Advisory Committee Guideline for the Prevention of Surgical Site Infection (2017): a summary, review, and strategies for implementation.
        Am J Infect Control. 2018; 46: 602-609
        • Berríos-Torres S.I.
        • Umscheid C.A.
        • Bratzler D.W.
        • et al.
        Centers for Disease Control and Prevention guideline for the prevention of surgical site infection, 2017.
        JAMA Surg. 2017; 152: 784-791
        • Bratzler D.W.
        • Dellinger E.P.
        • Olsen K.M.
        • et al.
        Clinical practice guidelines for antimicrobial prophylaxis in surgery.
        Surg Infect (Larchmt). 2013; 14: 73-156
        • Zanetti G.
        • Giardina R.
        • Platt R.
        Intraoperative redosing of cefazolin and risk for surgical site infection in cardiac surgery.
        Emerg Infect Dis. 2001; 7: 828-831
        • Morita S.
        • Nishisho I.
        • Nomura T.
        • et al.
        The significance of the intraoperative repeated dosing of antimicrobials for preventing surgical wound infection in colorectal surgery.
        Surg Today. 2005; 35: 732-738
        • Kasatpibal N.
        • Whitney J.D.
        • Dellinger E.P.
        • et al.
        Failure to redose antibiotic prophylaxis in long surgery increases risk of surgical site infection.
        Surg Infect (Larchmt). 2017; 18: 474-484
        • Buchleitner A.M.
        • Martínez-Alonso M.
        • Hernández M.
        • et al.
        Perioperative glycaemic control for diabetic patients undergoing surgery.
        Cochrane Database Syst Rev. 2012; (Cd007315)
        • Jämsen E.
        • Nevalainen P.
        • Eskelinen A.
        • et al.
        Obesity, diabetes, and preoperative hyperglycemia as predictors of periprosthetic joint infection: a single-center analysis of 7181 primary hip and knee replacements for osteoarthritis.
        J Bone Joint Surg Am. 2012; 94: e101
        • Gachabayov M.
        • Senagore A.J.
        • Abbas S.K.
        • et al.
        Perioperative hyperglycemia: an unmet need within a surgical site infection bundle.
        Tech Coloproctol. 2018; 22: 201-207
        • Ngaage L.M.
        • Osadebey E.N.
        • Tullie S.T.E.
        • et al.
        An update on measures of preoperative glycemic control.
        Plast Reconstr Surg Glob Open. 2019; 7: e2240
        • Takesue Y.
        • Tsuchida T.
        Strict glycemic control to prevent surgical site infections in gastroenterological surgery.
        Ann Gastroenterol Surg. 2017; 1: 52-59
        • Jafar N.
        • Edriss H.
        • Nugent K.
        The effect of short-term hyperglycemia on the innate immune system.
        Am J Med Sci. 2016; 351: 201-211
        • Hoogwerf B.J.
        • Sheeler L.R.
        • Licata A.A.
        Endocrine management of the open heart surgical patient.
        Semin Thorac Cardiovasc Surg. 1991; 3: 75-80
        • MacRury S.M.
        • Gemmell C.G.
        • Paterson K.R.
        • et al.
        Changes in phagocytic function with glycaemic control in diabetic patients.
        J Clin Pathol. 1989; 42: 1143-1147
        • Drachman R.H.
        • Root R.K.
        • Wood Jr., W.B.
        Studies on the effect of experimental nonketotic diabetes mellitus on antibacterial defense. I. Demonstration of a defect in phagocytosis.
        J Exp Med. 1966; 124: 227-240
        • Turina M.
        • Fry D.E.
        • Polk Jr., H.C.
        Acute hyperglycemia and the innate immune system: clinical, cellular, and molecular aspects.
        Crit Care Med. 2005; 33: 1624-1633
        • Trick W.E.
        • Scheckler W.E.
        • Tokars J.I.
        • et al.
        Modifiable risk factors associated with deep sternal site infection after coronary artery bypass grafting.
        J Thorac Cardiovasc Surg. 2000; 119: 108-114
        • Furnary A.P.
        • Zerr K.J.
        • Grunkemeier G.L.
        • et al.
        Continuous intravenous insulin infusion reduces the incidence of deep sternal wound infection in diabetic patients after cardiac surgical procedures.
        Ann Thorac Surg. 1999; 67 ([discussion: 360–2]): 352-360
      2. 15. Diabetes care in the hospital: standards of medical care in diabetes-2021.
        Diabetes Care. 2021; 44: S211-S220
        • Umpierrez G.E.
        • Hellman R.
        • Korytkowski M.T.
        • et al.
        Management of hyperglycemia in hospitalized patients in non-critical care setting: an Endocrine Society Clinical Practice guideline.
        J Clin Endocrinol Metab. 2012; 97: 16-38
        • Malcolm J.
        • Halperin I.
        • Miller D.B.
        • et al.
        In-hospital management of diabetes.
        Can J Diabetes. 2018; 42: S115-S123
        • Sessler D.I.
        Perioperative heat balance.
        Anesthesiology. 2000; 92: 578-596
        • Sessler D.I.
        Complications and treatment of mild hypothermia.
        Anesthesiology. 2001; 95: 531-543
        • Kurz A.
        • Sessler D.I.
        • Lenhardt R.
        Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group.
        N Engl J Med. 1996; 334: 1209-1215
        • Bu N.
        • Zhao E.
        • Gao Y.
        • et al.
        Association between perioperative hypothermia and surgical site infection: a meta-analysis.
        Medicine (Baltimore). 2019; 98: e14392
        • Kaneko K.
        • Kawai K.
        • Tsuno N.H.
        • et al.
        Perioperative allogeneic blood transfusion is associated with surgical site infection after abdominoperineal resection-a space for the implementation of patient blood management strategies.
        Int Surg. 2015; 100: 797-804
        • Yuan Y.
        • Zhang Y.
        • Shen L.
        • et al.
        Perioperative allogeneic red blood cell transfusion and wound infections: an observational study.
        Anesth Analg. 2020; 131: 1573-1581
        • Tan T.W.
        • Farber A.
        • Hamburg N.M.
        • et al.
        Blood transfusion for lower extremity bypass is associated with increased wound infection and graft thrombosis.
        J Am Coll Surg. 2013; 216 ([quiz: 1031–3]): 1005-1014.e2
        • Wong P.F.
        • Kumar S.
        • Bohra A.
        • et al.
        Randomized clinical trial of perioperative systemic warming in major elective abdominal surgery.
        Br J Surg. 2007; 94: 421-426
        • Melling A.C.
        • Ali B.
        • Scott E.M.
        • et al.
        Effects of preoperative warming on the incidence of wound infection after clean surgery: a randomised controlled trial.
        Lancet. 2001; 358: 876-880
        • Ejaz A.
        • Schmidt C.
        • Johnston F.M.
        • et al.
        Risk factors and prediction model for inpatient surgical site infection after major abdominal surgery.
        J Surg Res. 2017; 217: 153-159
        • Babazade R.
        • Yilmaz H.O.
        • Zimmerman N.M.
        • et al.
        Association between intraoperative low blood pressure and development of surgical site infection after colorectal surgery: a retrospective cohort study.
        Ann Surg. 2016; 264: 1058-1064
        • Zelenitsky S.A.
        • Ariano R.E.
        • Harding G.K.
        • et al.
        Antibiotic pharmacodynamics in surgical prophylaxis: an association between intraoperative antibiotic concentrations and efficacy.
        Antimicrob Agents Chemother. 2002; 46: 3026-3030
        • Edmiston C.E.
        • Krepel C.
        • Kelly H.
        • et al.
        Perioperative antibiotic prophylaxis in the gastric bypass patient: do we achieve therapeutic levels?.
        Surgery. 2004; 136: 738-747
        • Caffarelli A.D.
        • Holden J.P.
        • Baron E.J.
        • et al.
        Plasma cefazolin levels during cardiovascular surgery: effects of cardiopulmonary bypass and profound hypothermic circulatory arrest.
        J Thorac Cardiovasc Surg. 2006; 131: 1338-1343
        • Fellinger E.K.
        • Leavitt B.J.
        • Hebert J.C.
        Serum levels of prophylactic cefazolin during cardiopulmonary bypass surgery.
        Ann Thorac Surg. 2002; 74: 1187-1190
        • Krivoy N.
        • Yanovsky B.
        • Kophit A.
        • et al.
        Vancomycin sequestration during cardiopulmonary bypass surgery.
        J Infect. 2002; 45: 90-95
        • Miglioli P.A.
        • Merlo F.
        • Grabocka E.
        • et al.
        Effects of cardio-pulmonary bypass on vancomycin plasma concentration decay.
        Pharmacol Res. 1998; 38: 275-278
        • Ortega G.M.
        • Martí-Bonmatí E.
        • Guevara S.J.
        • et al.
        Alteration of vancomycin pharmacokinetics during cardiopulmonary bypass in patients undergoing cardiac surgery.
        Am J Health Syst Pharm. 2003; 60: 260-265
        • Brewer R.
        • Theurer P.F.
        • Cogan C.M.
        • et al.
        Morbidity but not mortality is decreased after off-pump coronary artery bypass surgery.
        Ann Thorac Surg. 2014; 97: 831-836
        • Xia L.
        • Ji Q.
        • Song K.
        • et al.
        Early clinical outcomes of on-pump beating-heart versus off-pump technique for surgical revascularization in patients with severe left ventricular dysfunction: the experience of a single center.
        J Cardiothorac Surg. 2017; 12: 11
        • Khan H.
        • Uzzaman M.
        • Benedetto U.
        • et al.
        On- or off-pump coronary artery bypass grafting for octogenarians: a meta-analysis of comparative studies involving 27,623 patients.
        Int J Surg. 2017; 47: 42-51
        • Resalt-Pereira M.
        • Muñoz J.L.
        • Miranda E.
        • et al.
        Goal-directed fluid therapy on laparoscopic colorectal surgery within enhanced recovery after surgery program.
        Rev Esp Anestesiol Reanim. 2019; 66 (Efecto de la fluidoterapia guiada por objetivos en cirugía colorrectal laparoscópica dentro de un protocolo de rehabilitación multimodal): 259-266
        • Dalfino L.
        • Giglio M.T.
        • Puntillo F.
        • et al.
        Haemodynamic goal-directed therapy and postoperative infections: earlier is better. A systematic review and meta-analysis.
        Crit Care. 2011; 15: R154
        • Chong M.A.
        • Wang Y.
        • Berbenetz N.M.
        • et al.
        Does goal-directed haemodynamic and fluid therapy improve peri-operative outcomes?: a systematic review and meta-analysis.
        Eur J Anaesthesiol. 2018; 35: 469-483
        • Swoboda S.M.
        • Merz C.
        • Kostuik J.
        • et al.
        Does intraoperative blood loss affect antibiotic serum and tissue concentrations?.
        Arch Surg. 1996; 131 ([discussion: 1171–2]): 1165-1171
        • Markantonis S.L.
        • Kostopanagiotou G.
        • Panidis D.
        • et al.
        Effects of blood loss and fluid volume replacement on serum and tissue gentamicin concentrations during colorectal surgery.
        Clin Ther. 2004; 26: 271-281
        • Pop-Vicas A.
        • Musuuza J.S.
        • Schmitz M.
        • et al.
        Incidence and risk factors for surgical site infection post-hysterectomy in a tertiary care center.
        Am J Infect Control. 2017; 45: 284-287
        • Park S.Y.
        • Kim M.S.
        • Eom J.S.
        • et al.
        Risk factors and etiology of surgical site infection after radical neck dissection in patients with head and neck cancer.
        Korean J Intern Med. 2016; 31: 162-169
        • Zhao B.
        • Huang X.
        • Lu H.
        • et al.
        Intraoperative blood loss does not independently affect the survival outcome of gastric cancer patients who underwent curative resection.
        Clin Transl Oncol. 2019; 21: 1197-1206
        • Chipko J.
        • DeSantis A.
        • Quinn E.
        • et al.
        Effects of modifiable, non-modifiable and clinical process factors in ventral hernia repair surgical site infections: a retrospective study.
        Am J Surg. 2017; 214: 838-843
        • Drosos G.I.
        • Blatsoukas K.S.
        • Ververidis A.
        • et al.
        Blood transfusion and cytokines' changes in total knee replacement.
        Arch Orthop Trauma Surg. 2012; 132: 1505-1513
        • Newman E.T.
        • Watters T.S.
        • Lewis J.S.
        • et al.
        Impact of perioperative allogeneic and autologous blood transfusion on acute wound infection following total knee and total hip arthroplasty.
        J Bone Joint Surg Am. 2014; 96: 279-284
        • Leaper D.J.
        • Edmiston C.E.
        World Health Organization: global guidelines for the prevention of surgical site infection.
        J Hosp Infect. 2017; 95: 135-136
        • Hopf H.W.
        • Hunt T.K.
        • West J.M.
        • et al.
        Wound tissue oxygen tension predicts the risk of wound infection in surgical patients.
        Arch Surg. 1997; 132 ([discussion: 1005]): 997-1004
        • Niinikoski J.
        • Jussila P.
        • Vihersaari T.
        Radical mastectomy wound as a model for studies of human wound metabolism.
        Am J Surg. 1973; 126: 53-58
        • Belda F.J.
        • Aguilera L.
        • García de la Asunción J.
        • et al.
        Supplemental perioperative oxygen and the risk of surgical wound infection: a randomized controlled trial.
        Jama. 2005; 294: 2035-2042
        • Bickel A.
        • Gurevits M.
        • Vamos R.
        • et al.
        Perioperative hyperoxygenation and wound site infection following surgery for acute appendicitis: a randomized, prospective, controlled trial.
        Arch Surg. 2011; 146: 464-470
        • Greif R.
        • Akça O.
        • Horn E.P.
        • et al.
        Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection.
        N Engl J Med. 2000; 342: 161-167
        • Qadan M.
        • Akça O.
        • Mahid S.S.
        • et al.
        Perioperative supplemental oxygen therapy and surgical site infection: a meta-analysis of randomized controlled trials.
        Arch Surg. 2009; 144 ([discussion: 366–7]): 359-366
        • Kurz A.
        • Kopyeva T.
        • Suliman I.
        • et al.
        Supplemental oxygen and surgical-site infections: an alternating intervention controlled trial.
        Br J Anaesth. 2018; 120: 117-126
        • Meyhoff C.S.
        • Wetterslev J.
        • Jorgensen L.N.
        • et al.
        Effect of high perioperative oxygen fraction on surgical site infection and pulmonary complications after abdominal surgery: the PROXI randomized clinical trial.
        Jama. 2009; 302: 1543-1550
        • Wetterslev J.
        • Meyhoff C.S.
        • Jørgensen L.N.
        • et al.
        The effects of high perioperative inspiratory oxygen fraction for adult surgical patients.
        Cochrane Database Syst Rev. 2015; 2015 (Cd008884)
        • Cohen B.
        • Schacham Y.N.
        • Ruetzler K.
        • et al.
        Effect of intraoperative hyperoxia on the incidence of surgical site infections: a meta-analysis.
        Br J Anaesth. 2018; 120: 1176-1186
        • Myles P.S.
        • Kurz A.
        Supplemental oxygen and surgical site infection: getting to the truth.
        Br J Anaesth. 2017; 119: 13-15
        • Weenink R.P.
        • de Jonge S.W.
        • van Hulst R.A.
        • et al.
        Perioperative hyperoxyphobia: justified or not? Benefits and harms of hyperoxia during surgery.
        J Clin Med. 2020; 9https://doi.org/10.3390/jcm9030642
        • Fleischmann E.
        • Herbst F.
        • Kugener A.
        • et al.
        Mild hypercapnia increases subcutaneous and colonic oxygen tension in patients given 80% inspired oxygen during abdominal surgery.
        Anesthesiology. 2006; 104: 944-949
        • Akça O.
        • Kurz A.
        • Fleischmann E.
        • et al.
        Hypercapnia and surgical site infection: a randomized trial.
        Br J Anaesth. 2013; 111: 759-767