Advertisement

Neuromuscular Blockade Monitoring and Reversal

A Clinical and Pharmacoeconomic Update
Published:September 28, 2021DOI:https://doi.org/10.1016/j.aan.2021.07.010
      Residual paralysis permeates anesthesia practices throughout the world.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Anesthesia
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Griffith H.R.
        Curare in anesthesia.
        J Am Med Assoc. 1945; 127: 642-644
        • Beecher H.K.
        • Todd D.P.
        A study of the deaths associated with anesthesia and surgery: based on a study of 599, 548 anesthesias in ten institutions 1948-1952, inclusive.
        Ann Surg. 1954; 140: 2-35
        • Fuchs-Buder T.
        • Claudius C.
        • Skovgaard L.T.
        • et al.
        Good clinical research practice in pharmacodynamic studies of neuromuscular blocking agents II: the Stockholm revision.
        Acta Anaesthesiol Scand. 2007; 51: 789-808
        • Naguib M.
        • Brull S.J.
        • Kopman A.F.
        • et al.
        Consensus statement on perioperative use of neuromuscular monitoring.
        Anesth Analg. 2018; 127: 71-80
        • Claudius C.
        • Viby-Mogensen J.
        Acceleromyography for use in scientific and clinical practice: a systematic review of the evidence.
        Anesthesiology. 2008; 108: 1117-1140
        • Capron F.
        • Alla F.
        • Hottier C.
        • et al.
        Can acceleromyography detect low levels of residual paralysis? A probability approach to detect a mechanomyographic train-of-four ratio of 0.9.
        Anesthesiology. 2004; 100: 1119-1124
        • Claudius C.
        • Skovgaard L.T.
        • Viby-Mogensen J.
        Is the performance of acceleromyography improved with preload and normalization? A comparison with mechanomyography.
        Anesthesiology. 2009; 110: 1261-1270
        • Claudius C.
        • Skovgaard L.T.
        • Viby-Mogensen J.
        Arm-to-arm variation when evaluating neuromuscular block: an analysis of the precision and the bias and agreement between arms when using mechanomyography or acceleromyography.
        Br J Anaesth. 2010; 105: 310-317
        • Dubois P.E.
        • De Bel M.
        • Jamart J.
        • et al.
        Performance of acceleromyography with a short and light TOF-tube compared with mechanomyography: a clinical comparison.
        Eur J Anaesthesiol. 2014; 31: 404-410
        • Kopman A.F.
        • Chin W.
        • Cyriac J.
        Acceleromyography vs. electromyography: an ipsilateral comparison of the indirectly evoked neuromuscular response to train-of-four stimulation.
        Acta Anaesthesiol Scand. 2005; 49: 316-322
        • Naguib M.
        • Brull S.J.
        • Johnson K.B.
        Conceptual and technical insights into the basis of neuromuscular monitoring.
        Anaesthesia. 2017; 72: 16-37
        • Liang S.S.
        • Stewart P.A.
        • Phillips S.
        An ipsilateral comparison of acceleromyography and electromyography during recovery from nondepolarizing neuromuscular block under general anesthesia in humans.
        Anesth Analg. 2013; 117: 373-379
        • Katz R.L.
        Neuromuscular effects of d-tubocurarine, edrophonium and neostigmine in man.
        Anesthesiology. 1967; 28: 327-336
        • Murphy G.S.
        • Szokol J.W.
        • Avram M.J.
        • et al.
        Neostigmine administration after spontaneous recovery to a train-of-four ratio of 0.9 to 1.0: a randomized controlled trial of the effect on neuromuscular and clinical recovery.
        Anesthesiology. 2018; 128: 27-37
        • Kirkegaard H.
        • Heier T.
        • Caldwell J.E.
        Efficacy of tactile-guided reversal from cisatracurium-induced neuromuscular block.
        Anesthesiology. 2002; 96: 45-50
        • Kopman A.
        • Naguib M.
        Neostigmine-induced weakness after sugammadex - a reply.
        Anaesthesia. 2019; 74: 254
        • Kaufhold N.
        • Schaller S.J.
        • Stauble C.G.
        • et al.
        Sugammadex and neostigmine dose-finding study for reversal of residual neuromuscular block at a train-of-four ratio of 0.2 (SUNDRO20)dagger.
        Br J Anaesth. 2016; 116: 233-240
        • Miller R.D.
        • Van Nyhuis L.S.
        • Eger 2nd, E.I.
        • et al.
        Comparative times to peak effect and durations of action of neostigmine and pyridostigmine.
        Anesthesiology. 1974; 41: 27-33
        • Kirkegaard-Nielsen H.
        • Helbo-Hansen H.S.
        • Lindholm P.
        • et al.
        Time to peak effect of neostigmine at antagonism of atracurium- or vecuronium-induced neuromuscular block.
        J Clin Anesth. 1995; 7: 635-639
        • Hristovska A.M.
        • Duch P.
        • Allingstrup M.
        • et al.
        The comparative efficacy and safety of sugammadex and neostigmine in reversing neuromuscular blockade in adults. A Cochrane systematic review with meta-analysis and trial sequential analysis.
        Anaesthesia. 2018; 73: 631-641
        • Plaud B.
        • Baillard C.
        • Bourgain J.L.
        • et al.
        Guidelines on muscle relaxants and reversal in anaesthesia.
        Anaesth Crit Care Pain Med. 2020; 39: 125-142
        • Galvao V.R.
        • Giavina-Bianchi P.
        • Castells M.
        Perioperative anaphylaxis.
        Curr Allergy Asthma Rep. 2014; 14: 452
        • Orihara M.
        • Takazawa T.
        • Horiuchi T.
        • et al.
        Comparison of incidence of anaphylaxis between sugammadex and neostigmine: a retrospective multicentre observational study.
        Br J Anaesth. 2020; 124: 154-163
        • de Souza C.M.
        • Tardelli M.A.
        • Tedesco H.
        • et al.
        Efficacy and safety of sugammadex in the reversal of deep neuromuscular blockade induced by rocuronium in patients with end-stage renal disease: a comparative prospective clinical trial.
        Eur J Anaesthesiol. 2015; 32: 681-686
        • Savic L.
        • Savic S.
        • Hopkins P.M.
        Anaphylaxis to sugammadex: should we be concerned by the Japanese experience?.
        Br J Anaesth. 2020; ([Epub ahead of print])
        • Plaud B.
        • Debaene B.
        • Donati F.
        • et al.
        Residual paralysis after emergence from anesthesia.
        Anesthesiology. 2010; 112: 1013-1022
        • Murphy G.S.
        • Brull S.J.
        Residual neuromuscular block: lessons unlearned. Part I: definitions, incidence, and adverse physiologic effects of residual neuromuscular block.
        Anesth Analg. 2010; 111: 120-128
        • Carvalho H.
        • Verdonck M.
        • Cools W.
        • et al.
        Forty years of neuromuscular monitoring and postoperative residual curarisation: a meta-analysis and evaluation of confidence in network meta-analysis.
        Br J Anaesth. 2020; 125: 466-482
        • Naguib M.
        • Kopman A.F.
        • Lien C.A.
        • et al.
        A survey of current management of neuromuscular block in the United States and Europe.
        Anesth Analg. 2010; 111: 110-119
        • Videira R.L.
        • Vieira J.E.
        What rules of thumb do clinicians use to decide whether to antagonize nondepolarizing neuromuscular blocking drugs?.
        Anesth Analg. 2011; 113: 1192-1196
        • Harman A.
        • Tung A.
        • Fox C.
        • et al.
        Heuristics, overconfidence, and experience: impact on monitoring depth of neuromuscular blockade.
        Anesth Analg. 2019; 128: 1057-1059
        • Naguib M.
        • Brull S.J.
        • Hunter J.M.
        • et al.
        Anesthesiologists' overconfidence in their perceived knowledge of neuromuscular monitoring and its relevance to all aspects of medical practice: an international survey.
        Anesth Analg. 2019; 128: 1118-1126
        • El-Orbany M.
        Objective neuromuscular monitoring: the challenges limiting its use.
        Acta Anaesthesiol Scand. 2018; 62: 267
        • Soderstrom C.M.
        • Eskildsen K.Z.
        • Gatke M.R.
        • et al.
        Objective neuromuscular monitoring of neuromuscular blockade in Denmark: an online-based survey of current practice.
        Acta Anaesthesiol Scand. 2017; 61: 619-626
        • Soderstrom C.M.
        • Eskildsen K.Z.
        • Gatke M.R.
        • et al.
        Response to 'Objective neuromuscular monitoring: the challenges limiting its use' by Dr. El-Orbany.
        Acta Anaesthesiol Scand. 2018; 62: 268-269
        • Nemes R.
        • Nagy G.
        • Murphy G.S.
        • et al.
        Awake volunteer pain scores during neuromuscular monitoring.
        Anesth Analg. 2020; 130: 941-948
        • Klein A.A.
        • Meek T.
        • Allcock E.
        • et al.
        Recommendations for standards of monitoring during anaesthesia and recovery 2021: Guideline from the Association of Anaesthetists..
        Anaesthesia. 2021; 76: 1212-1223
        • Dobson G.
        • Chow L.
        • Filteau L.
        • et al.
        Guidelines to the practice of anesthesia - Revised edition 2020.
        Can J Anaesth. 2020; 67: 64-99
      1. ANZCA. Guidelines on monitoring during anaesthesia, PS18 (2017). Available at: https://www.anzca.edu.au/getattachment/0c2d9717-fa82-4507-a3d6-3533d8fa844d/PS18-Guideline-on-monitoring-during-anaesthesia.

        • Kotake Y.
        • Ochiai R.
        • Suzuki T.
        • et al.
        Reversal with sugammadex in the absence of monitoring did not preclude residual neuromuscular block.
        Anesth Analg. 2013; 117: 345-351
      2. Japanese Society of Anesthesiologists. Medical alert: appropriate use of sugammadex (in Japanese) 2019. Available at: https://anesth.or.jp/users/news/detail/5c6e37f8-2d98-4ec8-b342-197fa50cc6ad.

        • Sasakawa T.
        • Miyasaka K.
        • Sawa T.
        • et al.
        Postoperative recurarization after sugammadex administration due to the lack of appropriate neuromuscular monitoring: The Japanese Experience..
        Anesthesia Patient Safety Foundation Newsletter. 2020; 35: 42-43
      3. Japanese Society of Anesthesiologists. Standards and guidelines: monitoring during anesthesia (in Japanese) 2019. Available at: https://anesth.or.jp/files/pdf/monitor3_20190509.pdf.

        • Brull S.J.
        • Silverman D.G.
        Pulse width, stimulus intensity, electrode placement, and polarity during assessment of neuromuscular block.
        Anesthesiology. 1995; 83: 702-709
        • Murphy G.S.
        • Szokol J.W.
        • Avram M.J.
        • et al.
        Intraoperative acceleromyography monitoring reduces symptoms of muscle weakness and improves quality of recovery in the early postoperative period.
        Anesthesiology. 2011; 115: 946-954
        • Eriksson L.I.
        • Sundman E.
        • Olsson R.
        • et al.
        Functional assessment of the pharynx at rest and during swallowing in partially paralyzed humans: simultaneous videomanometry and mechanomyography of awake human volunteers.
        Anesthesiology. 1997; 87: 1035-1043
        • Eikermann M.
        • Vogt F.M.
        • Herbstreit F.
        • et al.
        The predisposition to inspiratory upper airway collapse during partial neuromuscular blockade.
        Am J Respir Crit Care Med. 2007; 175: 9-15
        • Butterly A.
        • Bittner E.A.
        • George E.
        • et al.
        Postoperative residual curarization from intermediate-acting neuromuscular blocking agents delays recovery room discharge.
        Br J Anaesth. 2010; 105: 304-309
        • Fortier L.P.
        • McKeen D.
        • Turner K.
        • et al.
        The RECITE study: a canadian prospective, multicenter study of the incidence and severity of residual neuromuscular blockade.
        Anesth Analg. 2015; 121: 366-372
        • Norton M.
        • Xara D.
        • Parente D.
        • et al.
        Residual neuromuscular block as a risk factor for critical respiratory events in the post anesthesia care unit.
        Rev Esp Anestesiol Reanim. 2013; 60: 190-196
        • Tu R.H.
        • Lin J.X.
        • Li P.
        • et al.
        Prognostic significance of postoperative pneumonia after curative resection for patients with gastric cancer.
        Cancer Med. 2017; 6: 2757-2765
        • Neto A.S.
        • da Costa L.G.V.
        • Hemmes S.N.T.
        • et al.
        The LAS VEGAS risk score for prediction of postoperative pulmonary complications: an observational study.
        Eur J Anaesthesiol. 2018; 35: 691-701
        • Bulka C.M.
        • Terekhov M.A.
        • Martin B.J.
        • et al.
        Nondepolarizing neuromuscular blocking agents, reversal, and risk of postoperative pneumonia.
        Anesthesiology. 2016; 125: 647-655
        • Bronsert M.R.
        • Henderson W.G.
        • Monk T.G.
        • et al.
        Intermediate-acting nondepolarizing neuromuscular blocking agents and risk of postoperative 30-day morbidity and mortality, and long-term survival.
        Anesth Analg. 2017; 124: 1476-1483
        • Grosse-Sundrup M.
        • Henneman J.P.
        • Sandberg W.S.
        • et al.
        Intermediate acting non-depolarizing neuromuscular blocking agents and risk of postoperative respiratory complications: prospective propensity score matched cohort study.
        BMJ. 2012; 345: e6329
        • McLean D.J.
        • Diaz-Gil D.
        • Farhan H.N.
        • et al.
        Dose-dependent association between intermediate-acting neuromuscular-blocking agents and postoperative respiratory complications.
        Anesthesiology. 2015; 122: 1201-1213
        • Sasaki N.
        • Meyer M.J.
        • Malviya S.A.
        • et al.
        Effects of neostigmine reversal of nondepolarizing neuromuscular blocking agents on postoperative respiratory outcomes: a prospective study.
        Anesthesiology. 2014; 121: 959-968
        • Gershengorn H.B.
        • Garland A.
        • Gong M.N.
        Patterns of daily costs differ for medical and surgical intensive care unit patients.
        Ann Am Thorac Soc. 2015; 12: 1831-1836
        • Niederman M.S.
        • McCombs J.S.
        • Unger A.N.
        • et al.
        The cost of treating community-acquired pneumonia.
        Clin Ther. 1998; 20: 820-837
        • Pimentel M.P.
        • Billings F.
        • Sivashanker K.
        • et al.
        Reducing medication waste while improving access to sugammadex: a quality improvement project in medication stewardship.
        A A Pract. 2020; 14: e01223
        • Almeter P.J.
        • Labuhn J.A.
        • Morris P.E.
        • et al.
        US Food and Drug administration disruption of generic drug market increases hospital costs.
        Anesth Analg. 2018; 127: 1414-1420
        • Luthe S.K.
        • Iwasaki H.
        The financial and humanistic costs associated with residual neuromuscular blockade..
        Current Anesthesiology Reports. 2020; 10: 242-250
        • Drzymalski D.M.
        • Schumann R.
        • Massaro F.J.
        • et al.
        Effect of a cognitive aid on reducing sugammadex use and associated costs: a time series analysis.
        Anesthesiology. 2019; 131: 1036-1045
        • Thilen S.R.
        • Ng I.C.
        • Cain K.C.
        • et al.
        Management of rocuronium neuromuscular block using a protocol for qualitative monitoring and reversal with neostigmine.
        Br J Anaesth. 2018; 121: 367-377
        • Manka-Malara K.
        • Gawlak D.
        • Hovhannisyan A.
        • et al.
        Dental trauma prevention during endotracheal intubation–review of literature.
        Anaesthesiol Intensive Ther. 2015; 47: 425-429
        • Tanaka Y.
        • Nakayama T.
        • Nishimori M.
        • et al.
        Lidocaine for preventing postoperative sore throat.
        Cochrane Database Syst Rev. 2009; (CD004081)
        • Pietraszewski P.
        • Gaszynski T.
        Residual neuromuscular block in elderly patients after surgical procedures under general anaesthesia with rocuronium.
        Anaesthesiol Intensive Ther. 2013; 45: 77-81
        • Murphy G.S.
        • Szokol J.W.
        • Avram M.J.
        • et al.
        Residual neuromuscular block in the elderly: incidence and clinical implications.
        Anesthesiology. 2015; 123: 1322-1336
        • Murphy G.S.
        • Szokol J.W.
        • Marymont J.H.
        • et al.
        Residual neuromuscular blockade and critical respiratory events in the postanesthesia care unit.
        Anesth Analg. 2008; 107: 130-137
        • Schaller S.J.
        • Fink H.
        • Ulm K.
        • et al.
        Sugammadex and neostigmine dose-finding study for reversal of shallow residual neuromuscular block.
        Anesthesiology. 2010; 113: 1054-1060
        • Fuchs-Buder T.
        • Meistelman C.
        • Alla F.
        • et al.
        Antagonism of low degrees of atracurium-induced neuromuscular blockade: dose-effect relationship for neostigmine.
        Anesthesiology. 2010; 112: 34-40