Advertisement

Regional Anesthesia for Cardiac Surgery

A Review of Fascial Plane Blocks and Their Uses
Published:September 30, 2021DOI:https://doi.org/10.1016/j.aan.2021.08.001
      Recent advances in regional anesthesia techniques have greatly expanded the role of regional anesthesia in cardiac surgery.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Anesthesia
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mazzeffi M.
        • Khelemsky Y.
        Poststernotomy pain: a clinical review.
        J Cardiothorac Vasc Anesth. 2011; 25: 1163-1178
        • Huang A.P.S.
        • Sakata R.K.
        Pain after sternotomy—review.
        Braz J Anesthesiol. 2016; 66: 395-401
        • Clowes Jr., G.H.
        • Neville W.E.
        • Hopkins A.
        • et al.
        Factors contributing to success or failure in the use of a pump oxygenator for complete by-pass of the heart and lung, experimental and clinical.
        Surgery. 1954; 36: 557-579
        • Priestley M.C.
        • Cope L.
        • Halliwell R.
        • et al.
        Thoracic epidural anesthesia for cardiac surgery: the effects on tracheal intubation time and length of hospital stay.
        Anesth Analg. 2002; 94: 275-282
        • Svircevic V.
        • Passier M.M.
        • Nierich A.P.
        • et al.
        Epidural analgesia for cardiac surgery.
        Cochrane Database Syst Rev. 2013; 6 (CD006715)
        • Zhang S.
        • Wu X.
        • Guo H.
        • et al.
        Thoracic epidural anesthesia improves outcomes in patients undergoing cardiac surgery: meta-analysis of randomized controlled trials.
        Eur J Med Res. 2015; 20: 25-35
        • Lee T.W.R.
        • Kowalski S.
        • Falk K.
        • et al.
        High spinal anesthesia enhances anti-inflammatory responses in patients undergoing coronary artery bypass graft surgery and aortic valve replacement: randomized pilot study.
        PLoS One. 2016; 11: e0149942
        • Caputo M.
        • Alwair H.
        • Rogers C.A.
        • et al.
        Thoracic epidural anesthesia improves early outcomes in patients undergoing off-pump coronary artery bypass surgery: a prospective, randomized, controlled trial.
        Anesthesiology. 2011; 114: 380-390
        • Landoni G.
        • Isella F.
        • Greco M.
        • et al.
        Benefits and risks of epidural analgesia in cardiac surgery.
        Br J Anaesth. 2015; 115: 25-32
        • Svircevic V.
        • van Dijk D.
        • Nierich A.P.
        • et al.
        Meta-analysis of thoracic epidural anesthesia versus general anesthesia for cardiac surgery.
        Anesthesiology. 2011; 114: 271-282
        • Ziyaeifard M.
        • Azarfarin R.
        • Golzari S.E.
        A review of current analgesic techniques in cardiac surgery. Is epidural worth it?.
        J Cardiovasc Thorac Res. 2014; 6: 133-140
        • Ho A.M.
        • Chung D.C.
        • Joynt G.M.
        Neuraxial blockade and hematoma in cardiac surgery: estimating the risk of a rare adverse event that has not (yet) occurred.
        Chest. 2000; 117: 551-555
        • Hemmerling T.M.
        • Cyr S.
        • Terrasini N.
        Epidural catheterization in cardiac surgery: the 2012 risk assessment.
        Ann Card Anaesth. 2013; 16: 169-177
        • Ueshima H.
        • Kitamura A.
        Blocking of multiple anterior branches of intercostal nerves (Th2-6) using a transversus thoracic muscle plane block.
        Reg Anesth Pain Med. 2015; 40: 388
        • de la Torre P.A.
        • García P.D.
        • Álvarez S.L.
        • et al.
        A novel ultrasound-guided block: a promising alternative for breast analgesia.
        Aesthet Surg J. 2014; 34: 198-200
        • Blanco R.
        The ‘Pecs block’: a novel technique for providing analgesia after breast surgery.
        Anaesthesia. 2011; 66: 847-848
        • Blanco R.
        • Fajardo M.
        • Parras Maldonado T.
        Ultrasound description of Pecs II (modified Pecs I): a novel approach to breast surgery.
        Rev Esp Anestesiol Reanim. 2012; 59: 470-475
        • Blanco R.
        • Parras T.
        • McDonnell J.G.
        • et al.
        Serratus plane block: a novel ultrasound-guided thoracic wall nerve block.
        Anaesthesia. 2013; 68: 1107-1113
        • Fajardo Pérez M.
        • García Miguel F.J.
        • López Álvarez S.
        • et al.
        Bloqueo de las ramas cutáneas laterales y anteriores de los nervios intercostales para analgesia de mama.
        Cir May Amb. 2012; 17: 95-104
        • Forero M.
        • Adhikary S.D.
        • Lopez H.
        • et al.
        The erector spinae plane block: a novel analgesic technique in thoracic neuropathic pain.
        Reg Anesth Pain Med. 2016; 41: 621-627
        • Kwanten L.E.
        • O'Brien B.
        • Anwar S.
        Opioid-based anesthesia and analgesia for adult cardiac surgery: history and narrative review of the literature.
        J Cardiothorac Vasc Anesth. 2019; 33: 808-816
        • Myles P.S.
        • Daly D.J.
        • Djaiani G.
        • et al.
        A systematic review of the safety and effectiveness of fast-track cardiac anesthesia.
        Anesthesiology. 2003; 99: 982-987
        • Cheng D.C.
        • Karski J.
        • Peniston C.
        • et al.
        Early tracheal extubation after coronary artery bypass graft surgery reduces costs and improves resource use. A prospective, randomized, controlled trial.
        Anesthesiology. 1996; 85: 1300-1310
        • Pande R.U.
        • Nader N.D.
        • Donias H.W.
        • et al.
        REVIEW: fast-tracking cardiac surgery.
        Heart Surg Forum. 2003; 6: 244-248
        • Cook D.J.
        • Pulido J.N.
        • Thompson J.E.
        • et al.
        Standardized practice design with electronic support mechanisms for surgical process improvement: reducing mechanical ventilation time.
        Ann Surg. 2014; 260: 1011-1015
        • Hawkes C.A.
        • Dhileepan S.
        • Foxcroft D.
        Early extubation for adult cardiac surgical patients.
        Cochrane Database Syst Rev. 2003; (CD003587)
        • Dhole S.
        • Mehta Y.
        • Saxena H.
        • et al.
        Comparison of continuous thoracic epidural and paravertebral blocks for postoperative analgesia after minimally invasive direct coronary artery bypass surgery.
        J Cardiothorac Vasc Anesth. 2001; 15: 288-292
        • Cheng D.C.
        Fast track cardiac surgery pathways: early extubation, process of care, and cost containment.
        Anesthesiology. 1998; 88: 1429-1433
        • Bracco D.
        • Hemmerling T.
        Thoracic epidural analgesia in cardiac surgery: impact on postoperative morbidity.
        Tech Reg Anesth Pain Manag. 2008; 12: 32-40
        • Hemmerling T.M.
        Regional anesthesia for cardiac surgery.
        Tech Reg Anesth Pain Manag. 2008; 12: 1-3
        • Metz S.
        • Schwann N.
        • Hassanein W.
        • et al.
        Intrathecal morphine for off-pump coronary artery bypass grafting.
        J Cardiothorac Vasc Anesth. 2004; 18: 451-453
        • Lena P.
        • Balarac N.
        • Arnulf J.J.
        • et al.
        Fast-track coronary artery bypass grafting surgery under general anesthesia with remifentanil and spinal analgesia with morphine and clonidine.
        J Cardiothorac Vasc Anesth. 2005; 19: 49-53
        • Lee T.W.R.
        • Jacobsohn E.
        Spinal anesthesia in cardiac surgery.
        Tech Reg Anesth Pain Manag. 2008; 12: 54-56
        • Cantó M.
        • Sánchez M.J.
        • Casas M.A.
        • et al.
        Bilateral paravertebral blockade for conventional cardiac surgery.
        Anaesthesia. 2003; 58: 365-370
        • Harle C.C.
        • Ganapathy S.
        Paravertebral analgesia for cardiac surgery.
        Tech Reg Anesth Pain Manag. 2008; 12: 57-63
        • Mehta Y.
        • Arora D.
        • Sharma K.K.
        • et al.
        Comparison of continuous thoracic epidural and paravertebral block for postoperative analgesia after robotic-assisted coronary artery bypass surgery.
        Ann Card Anaesth. 2008; 11: 91-96
        • Barr A.M.
        • Tutungi E.
        • Almeida A.A.
        Parasternal intercostal block with ropivacaine for pain management after cardiac surgery: a double-blind, randomized, controlled trial.
        J Cardiothorac Vasc Anesth. 2007; 21: 547-553
        • McDonald S.B.
        • Jacobsohn E.
        • Kopacz D.J.
        • et al.
        Parasternal block and local anesthetic infiltration with levobupivacaine after cardiac surgery with desflurane: the effect on postoperative pain, pulmonary function, and tracheal extubation times.
        Anesth Analg. 2005; 100: 25-32
        • Dowling R.
        • Thielmeier K.
        • Ghaly A.
        • et al.
        Improved pain control after cardiac surgery: results of a randomized, double-blind, clinical trial.
        J Cardiothorac Vasc Anesth. 2003; 126: 1271-1278
        • Kocabas S.
        • Yedicocuklu D.
        • Yuksel E.
        • et al.
        Infiltration of the sternotomy wound and the mediastinal tube sites with 0.25% levobupivacaine as adjunctive treatment for postoperative pain after cardiac surgery.
        Eur J Anaesthesiol. 2008; 25: 842-849
        • Agarwal S.
        • Nuttall G.A.
        • Johnson M.E.
        • et al.
        A prospective, randomized, blinded study of continuous ropivacaine infusion in the median sternotomy incision following cardiac surgery.
        Reg Anesth Pain Med. 2013; 38: 145-150
        • Koukis I.
        • Argiriou M.
        • Dimakopoulou A.
        • et al.
        Use of continuous subcutaneous anesthetic infusion in cardiac surgical patients after median sternotomy.
        J Cardiothorac Surg. 2008; 3: 1-5
        • Chin K.J.
        Thoracic wall blocks: from paravertebral to retrolaminar to serratus to erector spinae and back again—a review of evidence.
        Best Pract Res Clin Anaesthesiol. 2019; 33: 67-77
        • Warfield Jr., D.J.
        • Barre S.
        • Das Adhikary S.
        Current understanding of the fascial plane blocks for analgesia of the chest wall: techniques and indications update for 2020.
        Curr Opin Anaesthesiol. 2020; 33: 692-697
        • Chin K.J.
        • Versyck B.
        • Pawa A.
        Ultrasound-guided fascial plane blocks of the chest wall: a state-of-the-art review.
        Anaesthesia. 2021; 76: 110-126
        • Kelava M.
        • Alfirevic A.
        • Bustamante S.
        • et al.
        Regional anesthesia in cardiac surgery: an overview of fascial plane chest wall blocks.
        Anesth Analg. 2020; 131: 127-135
        • Mittnacht A.J.C.
        Fascial plane blocks in cardiac surgery: same but different.
        J Cardiothorac Vasc Anesth. 2019; 33: 426-427
        • Caruso T.J.
        • Lawrence K.
        • Tsui B.C.H.
        Regional anesthesia for cardiac surgery.
        Curr Opin Anaesthesiol. 2019; 32: 674-682
        • Ueshima H.
        • Taketa Y.
        • Ishikawa S.
        • et al.
        Ultrasound-guided transversus thoracic muscle plane block: a cadaveric study of the spread of injectate.
        J Clin Anesth. 2015; 8: 696
        • Ueshima H.
        • Hara E.
        • Marui T.
        • et al.
        The ultrasound-guided transversus thoracic muscle plane block is effective for the median sternotomy.
        J Clin Anesth. 2016; 29: 83
        • Ueshima H.
        • Otake H.
        A successful case of subcutaneous implantable cardioverter-defibrillator implantation performed under the transversus thoracic muscle plane block.
        J Clin Anesth. 2016; 32: 253-254
        • Ueshima H.
        • Otake H.
        The lateral transversus thoracic muscle plane block is effective for the pericardial drainage.
        J Clin Anesth. 2017; 42: 12
        • Aydin M.E.
        • Medetoglu E.N.
        • Yazici K.
        • et al.
        A combination of serratus and transverse thoracic muscle plane blocks as the main anesthetic method for high-risk patient with pericardial tamponade.
        J Clin Anesth. 2021; 71: 110204
        • De Haan J.B.
        • Yu D.
        • Hernandez N.
        • et al.
        Preventing intubation with the transverse thoracic muscle plane block.
        Ann Card Anaesth. 2020; 23: 540-541
        • Thomas K.P.
        • Sainudeen S.
        • Jose S.
        • et al.
        Ultrasound-guided parasternal block allows optimal pain relief and ventilation improvement after a sternal fracture.
        Pain Ther. 2016; 1: 115-122
        • Aydin M.E.
        • Celik M.
        • Celik E.C.
        • et al.
        Transversus thoracic muscle plane block for persistent parasternal pain: the Tietze syndrome.
        J Clin Anesth. 2020; 63: 109755
        • Fujii S.
        • Roche M.
        • Jones P.
        • et al.
        Transversus thoracis muscle plan block in cardiac surgery: a pilot feasibility study.
        Reg Anesth Pain Med. 2019; 44: 556-560
        • Aydin M.E.
        • Ahiskalioglu A.
        • Ates I.
        • et al.
        Efficacy of ultrasound-guided transversus thoracic muscle plane block on postoperative opioid consumption after cardiac surgery: a prospective, randomized, double-blind study.
        J Cardiothorac Vasc Anesth. 2020; 34: 2996-3003
        • Zhang Y.
        • Chen S.
        • Gong H.
        • et al.
        Efficacy of bilateral transversus thoracis muscle plane block in pediatric patients undergoing open cardiac surgery.
        J Cardiothorac Vasc Anesth. 2020; 34: 2430-2434
        • Cakmak M.
        • Isik O.
        Transversus thoracic muscle plane block for analgesia after pediatric cardiac surgery.
        J Cardiothorac Vasc Anesth. 2021; 35: 130-136
        • Arasu T.
        • Ragavendran S.
        • Nagaraja P.S.
        • et al.
        Comparison of pectoral nerve (PECS1) block with combined PECS1 and transversus thoracis muscle (TTM) block in patients undergoing implantable electronic device insertion – a pilot study.
        Ann Card Anaesth. 2020; 23: 165-169
        • Zhang Y.
        • Gong H.
        • Zhan B.
        • et al.
        Efficacy of truncal plane blocks in pediatric patients undergoing subcutaneous implantable cardioverter-defibrillator placement.
        J Cardiothorac Vasc Anesth. 2021; 35: 2088-2093
        • Ueshima H.
        • Otake H.
        Continuous transversus thoracic muscle plane block is effective for median sternotomy.
        J Clin Anesth. 2017; 37: 174
        • Ueshima H.
        • Otake H.
        Ultrasound-guided transversus thoracic muscle plane block: complication in 299 consecutive cases.
        J Clin Anesth. 2017; 41: 6
        • Ueshima H.
        • Otake H.
        Comparison of spread of transversus thoracic plane block by sagittal and transverse approach in a clinical setting.
        J Clin Anesth. 2017; 43: 4-5
        • Sepolvere G.
        • Tognù A.
        • Tedesco M.
        • et al.
        Avoiding the internal mammary artery during parasternal blocks: ultrasound identification and technique considerations.
        J Cardiothorac Vasc Anesth. 2020; 35: 1594-1602
        • Murata H.
        • Hida K.
        • Hara T.
        Transverse thoracic muscle plane block tips and tricks to accomplish the block.
        J Clin Anesth. 2016; 41: 411-412
        • Raza I.
        • Narayanan M.
        • Venkataraju A.
        • et al.
        Bilateral subpectoral interfascial plane catheters for analgesia for sternal fractures: a case report.
        Reg Anesth Pain Med. 2016; 41: 607-609
        • Burns L.T.
        • Beasley D.A.
        • Stevens M.A.
        • et al.
        Pectointercostal fascial block catheters for thoracic injuries: a case series.
        A A Pract. 2018; 11: 340-343
        • López-Matamala B.
        • Fajardo M.
        • Estébanez-Montiel B.
        • et al.
        A new thoracic interfascial plane block as anesthesia for difficult weaning due to ribcage pain in critically ill patients.
        Med Intensiva. 2014; 38: 463-465
        • Liu V.
        • Mariano E.R.
        • Prabhakar C.
        Pecto-intercostal fascial block for acute poststernotomy pain: a case report.
        A A Pract. 2018; 10: 319-322
        • Ellouze O.
        • Missaoui A.
        • Berthoud V.
        • et al.
        Parasternal pectoral block for right anterior minimally invasive thoracotomy in cardiac surgery.
        J Cardiothorac Vasc Anesth. 2020; 34: 450-453
        • Takahshi H.
        • Suzuki T.
        Anterior thoracic medial block for administering postoperative analgesia in the internal mammary area.
        Reg Anesth Pain Med. 2016; 41: 660-661
        • Kumar A.K.
        • Chauhan S.
        • Bhoi D.
        • et al.
        Pectointercostal fascial block (PIFB) as a novel technique for postoperative pain management in patients undergoing cardiac surgery.
        J Cardiothorac Vasc Anesth. 2021; 35: 116-122
        • Khera T.
        • Murugappan K.R.
        • Leibowitz A.
        • et al.
        Ultrasound-guided pecto-intercostal fascial block for postoperative pain management in cardiac surgery: a prospective, randomized, placebo-controlled trial.
        J Cardiothorac Vasc Anesth. 2021; 35: 896-903
        • Bashandy G.M.N.
        • Abbas D.N.
        Pectoral nerves I and II blocks in multimodal analgesia for breast cancer surgery: a randomized clinical trial.
        Reg Anesth Pain Med. 2015; 40: 68-74
        • Fujiwara A.
        • Komasawa N.
        • Minami T.
        Pectoral nerves (PECS) and intercostal nerve block for cardiac resynchronization therapy device implantation.
        Springerplus. 2014; 3: 409
        • Yalamuri S.
        • Klinger R.Y.
        • Bullock W.M.
        • et al.
        Pectoral fascial (PECS) I and II blocks as rescue analgesia in a patient undergoing minimally invasive cardiac surgery.
        Reg Anesth Pain Med. 2017; 42: 764-766
        • Corso R.M.
        • Maitan S.
        • Russotto V.
        • et al.
        Type I and II pectoral nerve blocks with serratus plane block for awake video-assisted thoracic surgery.
        Anaesth Intensive Care. 2016; 44: 643-644
        • Kumar K.N.
        • Kalyane R.N.
        • Singh N.
        • et al.
        Efficacy of bilateral pectoralis nerve block for ultrafast tracking and postoperative pain management in cardiac surgery.
        Ann Card Anaesth. 2018; 21: 333-338
        • Ueshima H.
        • Otake H.
        Ultrasound-guided pectoral nerves (PECS) block: complications observed in 498 consecutive cases.
        J Clin Anesth. 2017; 42: 46
        • Kaushal B.
        • Chauhan S.
        • Saini K.
        • et al.
        Comparison of the efficacy of ultrasound-guided serratus anterior plane block, pectoral nerves II block, and intercostal nerve block for the management of postoperative thoracotomy pain after pediatric cardiac surgery.
        J Cardiothorac Vasc Anesth. 2019; 33: 418-425
        • Kunhabdulla N.P.
        • Agarwal A.
        • Gaur A.
        • et al.
        Serratus anterior plane block for multiple rib fractures.
        Pain Physician. 2014; 17: E553-E555
        • Fu P.
        • Weyker P.D.
        • Webb C.A.J.
        Case report of serratus plane catheter for pain management in a patient with multiple rib fractures and an inferior scapular fracture.
        A A Case Rep. 2017; 8: 132-135
        • Khalil A.E.
        • Abdallah N.M.
        • Bashandy G.M.
        • et al.
        Ultrasound-guided serratus anterior plane block versus thoracic epidural analgesia for thoracotomy pain.
        J Cardiothorac Vasc Anesth. 2017; 31: 152-158
        • Sekandarzad M.W.
        • Konstantatos A.
        • Donovan S.
        Bilateral continuous serratus anterior blockade for postoperative analgesia after bilateral sequential lung transplantation.
        J Cardiothorac Vasc Anesth. 2019; 33: 1356-1359
        • Nagaraja P.S.
        • Ragavendran S.
        • Singh N.G.
        • et al.
        Comparison of continuous thoracic epidural analgesia with bilateral spinae plane block for perioperative pain management in cardiac surgery.
        Ann Card Anaesth. 2018; 21: 323-327
        • Krishna S.N.
        • Chauhan S.
        • Bhoi D.
        • et al.
        Bilateral erector spinae plane block for acute post-surgical pain in adult cardiac surgical patients: a randomized controlled trial.
        J Cardiothorac Vasc Anesth. 2019; 33: 368-375
        • Macaire P.
        • Ho N.
        • Nguyen T.
        • et al.
        Ultrasound-guided continuous thoracic erector spinae plane block within an enhanced recovery program is associated with decreased opioid consumption and improved patient postoperative rehabilitation after open cardiac surgery—a patient-matched, controlled before-and-after study.
        J Cardiothorac Vasc Anesth. 2019; 33: 1659-1667
        • Chanowski E.J.P.
        • Horn J.-L.
        • Boyd J.H.
        • et al.
        Opioid-free ultra-fast-track on-pump coronary artery bypass grafting using erector spinae plane catheters.
        J Cardiothorac Vasc Anesth. 2019; 33: 1988-1990
        • Borys M.
        • Gaweda B.
        • Horeczy B.
        • et al.
        Erector spinae-plane block as an analgesic alternative in patients undergoing mitral and/or tricuspid valve repair through a right mini-thoracotomy—an observational cohort study.
        Wideochir Inne Tech Maloinwazyjne. 2020; 15: 208-214
        • Darling C.
        • Tsui B.
        Regional Anesthesia Cardiothoracic Enhanced Recovery (RACER): a new era.
        (Available at:) (Accessed January 20, 2021)
        • Horlocker T.T.
        • Vendermeulen E.
        • Kopp S.L.
        • et al.
        Regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy: American Society of Regional Anesthesia and Pain Medicine Evidence-Based Guidelines.
        Reg Anesth Pain Med. 2018; 43: 263-309
        • Ueshima H.
        Pneumothorax after the erector spinae plane block.
        J Clin Anesth. 2018; 48: 12
        • Sullivan T.R.
        • Kanda P.
        • Gagne S.
        • et al.
        Harlequin syndrome associated with erector spinae plane block.
        Anesthesiology. 2019; 131: 665
        • Tulgar S.
        • Selvi O.
        • Senturk O.
        • et al.
        Ultrasound-guided erector spinae plane block: indications, complications, and effects on acute and chronic pain based on a single-center experience.
        Cureus. 2019; 11: e3815
        • Engelman D.T.
        • Ali W.B.
        • Williams J.B.
        • et al.
        Guidelines for perioperative care in cardiac surgery: enhanced recovery after Surgery Society recommendations.
        JAMA Surg. 2019; 54: 755-766
        • Voscopoulos C.
        • Palaniappan D.
        • Zeballos J.
        • et al.
        The ultrasound-guided retrolaminar block.
        Can J Anaesth. 2013; 60: 888-895
        • Shibata Y.
        • Kampitak W.
        • Tansatit T.
        The novel costotransverse foramen technique: distribution characteristics of injectate compared with erector spinae plane block.
        Pain Physician. 2020; 23: E305-E314
        • Elsharkawy H.
        • Maniker R.
        • Bolash R.
        • et al.
        Rhomboid intercostal and subserratus plane block: a cadaveric and clinical evaluation.
        Reg Anesth Pain Med. 2018; 43: 745-751
        • Zinboonyahgoon N.
        • Luksanapruksa P.
        • Piyaselakul S.
        • et al.
        The ultrasound-guided proximal intercostal block: anatomical study and clinical correlation to analgesia for breast surgery.
        BMC Anesthesiol. 2019; 19: 94
        • Murphy G.S.
        • Avram M.J.
        • Greenberg S.B.
        • et al.
        Postoperative pain and analgesic requirements in the first year after intraoperative methadone for complex spine and cardiac surgery.
        Anesthesiology. 2020; 132: 330-342