Advertisement

Anesthesia Machine and New Modes of Ventilation

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Anesthesia
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pino R.M.
        • Bittner E.A.
        • Chitilian H.V.
        • et al.
        Massachusetts general hospital. Handbook of clinical anesthesia procedures of the Massachusetts general hospital.
        10th edition. Wolters Kluwer, Philadelphia2022 (cm)
        • Loeb R.L.
        • Martin J.
        COVID-19: intensive care ventilation with anesthesia machines.
        in: Post T.W. UpToDate. Available at: https://www.uptodate.com/contents/covid-19-intensive-care-ventilation-with-anesthesia-machines. Accessed February 10, 2022. UpToDate, 2022
      1. APSF/ASA guidance on purposing anesthesia machines as ICU ventilators.
        (Available at:) (Accessed February 12, 2022)
        • Bottiroli M.
        • Calini A.
        • Pinciroli R.
        • et al.
        The repurposed use of anesthesia machines to ventilate critically ill patients with coronavirus disease 2019 (COVID-19).
        BMC Anesthesiol. 2021; 21: 155
        • Acute Respiratory Distress Syndrome N.
        • Brower R.G.
        • Matthay M.A.
        • et al.
        Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome.
        N Engl J Med. 2000; 342: 1301-1308https://doi.org/10.1056/NEJM200005043421801
        • Amato M.B.
        • Meade M.O.
        • Slutsky A.S.
        • et al.
        Driving pressure and survival in the acute respiratory distress syndrome.
        N Engl J Med. 2015; 372: 747-755https://doi.org/10.1056/NEJMsa1410639
        • Guldner A.
        • Kiss T.
        • Serpa Neto A.
        • et al.
        Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: a comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers.
        Anesthesiology. 2015; 123: 692-713https://doi.org/10.1097/ALN.0000000000000754
        • Gattinoni L.
        • Quintel M.
        • Marini J.J.
        Volutrauma and atelectrauma: which is worse?.
        Crit Care. 2018; 22: 264
        • Kacmarek R.M.
        • Villar J.
        Lung-protective Ventilation in the Operating Room: Individualized Positive End-expiratory Pressure Is Needed.
        Anesthesiology. 2018; 129: 1057-1059
        • Futier E.
        • Constantin J.M.
        • Paugam-Burtz C.
        • et al.
        A trial of intraoperative low-tidal-volume ventilation in abdominal surgery.
        N Engl J Med. 2013; 369: 428-437https://doi.org/10.1056/NEJMoa1301082
        • Severgnini P.
        • Selmo G.
        • Lanza C.
        • et al.
        Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function.
        Anesthesiology. 2013; 118: 1307-1321
        • Hyzy R.C.J.
        • Shijing
        Modes of mechanical ventilation.
        in: Post T.W. Available at: https://www.uptodate.com/contents/covid-19-intensive-care-ventilation-with-anesthesia-machines. Accessed February 10, 2022. UpToDate, 2022
        • Chatburn R.L.
        • El-Khatib M.
        • Mireles-Cabodevila E.
        A taxonomy for mechanical ventilation: 10 fundamental maxims.
        Respir Care. 2014; 59: 1747-1763https://doi.org/10.4187/respcare.03057
        • Pham T.
        • Brochard L.J.
        • Slutsky A.S.
        Mechanical Ventilation: State of the Art.
        Mayo Clin Proc. 2017; 92: 1382-1400
        • Hess D.R.
        Respiratory mechanics in mechanically ventilated patients.
        Respir Care. 2014; 59: 1773-1794
        • Reddy R.M.
        • Guntupalli K.K.
        Review of ventilatory techniques to optimize mechanical ventilation in acute exacerbation of chronic obstructive pulmonary disease.
        Int J Chron Obstruct Pulmon Dis. 2007; 2: 441-452
        • Stather D.R.
        • Stewart T.E.
        Clinical review: Mechanical ventilation in severe asthma.
        Crit Care. 2005; 9: 581-587
        • Baydur A.
        Mechanical ventilation in interstitial lung disease: which patients are likely to benefit?.
        Chest. 2008; 133: 1062-1063https://doi.org/10.1378/chest.07-2615
        • Florio G.
        • De Santis Santiago R.R.
        • Fumagalli J.
        • et al.
        Pleural Pressure Targeted Positive Airway Pressure Improves Cardiopulmonary Function in Spontaneously Breathing Patients With Obesity.
        Chest. 2021; 159: 2373-2383https://doi.org/10.1016/j.chest.2021.01.055
        • Grassi L.
        • Kacmarek R.
        • Berra L.
        Ventilatory Mechanics in the Patient with Obesity.
        Anesthesiology. 2020; 132: 1246-1256https://doi.org/10.1097/ALN.0000000000003154
        • Sharma G.
        • Goodwin J.
        Effect of aging on respiratory system physiology and immunology.
        Clin Interv Aging. 2006; 1: 253-260https://doi.org/10.2147/ciia.2006.1.3.253
        • Bachmann M.C.
        • Morais C.
        • Bugedo G.
        • et al.
        Electrical impedance tomography in acute respiratory distress syndrome.
        Crit Care. 2018; 22: 263https://doi.org/10.1186/s13054-018-2195-6
        • Joshi G.P.
        Anesthesia for laparoscopic and abdominal robotic surgery in adults.
        in: Post T.W. Available at: https://www.uptodate.com/contents/covid-19-intensive-care-ventilation-with-anesthesia-machines. Accessed February 10, 2022. UpToDate, 2022
        • Guerin C.
        • Reignier J.
        • Richard J.C.
        • et al.
        Prone positioning in severe acute respiratory distress syndrome.
        N Engl J Med. 2013; 368: 2159-2168https://doi.org/10.1056/NEJMoa1214103
        • Feix B.
        • Sturgess J.
        Anaesthesia in the prone position.
        Continuing Education Anaesth Crit Care Pain. 2014; 14: 291-297https://doi.org/10.1093/bjaceaccp/mku001
        • Ma M.S.
        • Peter D.
        One lung ventilation: general principles.
        in: Post T.W. Available at: https://www.uptodate.com/contents/covid-19-intensive-care-ventilation-with-anesthesia-machines. Accessed February 10, 2022. UpToDate, 2022
        • Sylvester J.T.
        • Shimoda L.A.
        • Aaronson P.I.
        • et al.
        Hypoxic pulmonary vasoconstriction.
        Physiol Rev. 2012; 92: 367-520https://doi.org/10.1152/physrev.00041.2010
        • Lohser J.
        Evidence-based management of one-lung ventilation.
        Anesthesiol Clin. 2008; 26: 241-272https://doi.org/10.1016/j.anclin.2008.01.011
        • Sanders R.
        Two ventilating attachments for bronchoscopes.
        Del Med J. 1967; 39: 170
        • Evans E.
        • Biro P.
        • Bedforth N.
        Jet ventilation.
        Continuing Education Anaesth Crit Care Pain. 2007; 7: 2-5https://doi.org/10.1093/bjaceaccp/mkl061
        • Biro P.
        Jet ventilation for surgical interventions in the upper airway.
        Anesthesiol Clin. 2010; 28: 397-409https://doi.org/10.1016/j.anclin.2010.07.001
        • Galmen K.
        • Harbut P.
        • Freedman J.
        • et al.
        The use of high-frequency ventilation during general anaesthesia: an update.
        F1000Res. 2017; 6: 756
        • Elkassabany N.
        • Garcia F.
        • Tschabrunn C.
        • et al.
        Anesthetic management of patients undergoing pulmonary vein isolation for treatment of atrial fibrillation using high-frequency jet ventilation.
        J Cardiothorac Vasc Anesth. 2012; 26: 433-438
        • Singer M.
        • Young P.J.
        • Laffey J.G.
        • et al.
        Dangers of hyperoxia.
        Crit Care. 2021; 25: 440
        • Greif R.
        • Akca O.
        • Horn E.P.
        • et al.
        Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection.
        N Engl J Med. 2000; 342: 161-167
        • Belda F.J.
        • Aguilera L.
        • Garcia de la Asuncion J.
        • et al.
        Supplemental perioperative oxygen and the risk of surgical wound infection: a randomized controlled trial.
        JAMA. 2005; 294: 2035-2042
        • Pryor K.O.
        • Fahey 3rd, T.J.
        • Lien C.A.
        • et al.
        Surgical site infection and the routine use of perioperative hyperoxia in a general surgical population: a randomized controlled trial.
        JAMA. 2004; 291: 79-87
        • Mayzler O.
        • Weksler N.
        • Domchik S.
        • et al.
        Does supplemental perioperative oxygen administration reduce the incidence of wound infection in elective colorectal surgery?.
        Minerva Anestesiol. 2005; 71: 21-25
        • Gardella C.
        • Goltra L.B.
        • Laschansky E.
        • et al.
        High-concentration supplemental perioperative oxygen to reduce the incidence of postcesarean surgical site infection: a randomized controlled trial.
        Obstet Gynecol. 2008; 112: 545-552https://doi.org/10.1097/AOG.0b013e318182340c
        • Meyhoff C.S.
        • Jorgensen L.N.
        • Wetterslev J.
        • et al.
        Increased long-term mortality after a high perioperative inspiratory oxygen fraction during abdominal surgery: follow-up of a randomized clinical trial.
        Anesth Analg. 2012; 115: 849-854https://doi.org/10.1213/ANE.0b013e3182652a51
      2. Web Appendix 13a, Summary of the systematic review on perioperative oxygenation issued in 2016. Superseded by Appendix 13b and 13c. Global Guidelines for the Prevention of Surgical Site Infection World Health Organ.
        https://www.ncbi.nlm.nih.gov/books/NBK536427/
        Date: 2018
        Date accessed: February 11, 2022
        • Staehr A.K.
        • Meyhoff C.S.
        • Rasmussen L.S.
        • et al.
        Inspiratory oxygen fraction and postoperative complications in obese patients: a subgroup analysis of the PROXI trial.
        Anesthesiology. 2011; 114: 1313-1319https://doi.org/10.1097/ALN.0b013e31821bdb82
        • Meyhoff C.S.
        • Jorgensen L.N.
        • Wetterslev J.
        • et al.
        Risk of new or recurrent cancer after a high perioperative inspiratory oxygen fraction during abdominal surgery.
        Br J Anaesth. 2014; 113: i74-i81https://doi.org/10.1093/bja/aeu110
        • Shaefi S.
        • Shankar P.
        • Mueller A.L.
        • et al.
        Intraoperative Oxygen Concentration and Neurocognition after Cardiac Surgery.
        Anesthesiology. 2021; 134: 189-201https://doi.org/10.1097/ALN.0000000000003650
        • Lopez M.G.
        • Pretorius M.
        • Shotwell M.S.
        • et al.
        The Risk of Oxygen during Cardiac Surgery (ROCS) trial: study protocol for a randomized clinical trial.
        Trials. 2017; 18: 295https://doi.org/10.1186/s13063-017-2021-5
        • Mojoli F.
        • Torriglia F.
        • Orlando A.
        • et al.
        Technical aspects of bedside respiratory monitoring of transpulmonary pressure.
        Ann Transl Med. 2018; 6: 377https://doi.org/10.21037/atm.2018.08.37
        • Tharp W.G.
        • Murphy S.
        • Breidenstein M.W.
        • et al.
        Body Habitus and Dynamic Surgical Conditions Independently Impair Pulmonary Mechanics during Robotic-assisted Laparoscopic Surgery.
        Anesthesiology. 2020; 133: 750-763