Advertisement

Updates in the Management of Perioperative Vasoplegic Syndrome

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Anesthesia
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Liu H.
        • Yu L.
        • Yang L.
        • et al.
        Vasoplegic syndrome: An update on perioperative considerations.
        J Clin Anesth. 2017; 40: 63-71
        • Tsiouris A.
        • Wilson L.
        • Haddadin A.S.
        • et al.
        Risk assessment and outcomes of vasoplegia after cardiac surgery.
        Gen Thorac Cardiovasc Surg. 2017; 65: 557-565
        • Koelzow H.
        • Gedney J.A.
        • Baumann J.
        • et al.
        The effect of methylene blue on the hemodynamic changes during ischemia reperfusion injury in orthotopic liver transplantation.
        Anesth Analg. 2002; 94 (table of contents): 824-829
        • Shanmugam G.
        Vasoplegic syndrome--the role of methylene blue.
        Eur J Cardiothorac Surg. 2005; 28: 705-710
        • Boettcher B.T.
        • Woehlck H.J.
        • Reck S.E.
        • et al.
        Treatment of Vasoplegic Syndrome With Intravenous Hydroxocobalamin During Liver Transplantation.
        J Cardiothorac Vasc Anesth. 2017; 31: 1381-1384
        • Lambden S.
        • Creagh-Brown B.C.
        • Hunt J.
        • et al.
        Definitions and pathophysiology of vasoplegic shock.
        Crit Care. 2018; 22: 174
        • Levy B.
        • Fritz C.
        • Tahon E.
        • et al.
        Vasoplegia treatments: the past, the present, and the future.
        Crit Care. 2018; 22: 52
        • Kimmoun A.
        • Ducrocq N.
        • Levy B.
        Mechanisms of vascular hyporesponsiveness in septic shock.
        Curr Vasc Pharmacol. 2013; 11: 139-149
        • Hwang T.L.
        • Lau Y.T.
        • Huang S.F.
        • et al.
        Changes of alpha 1-adrenergic receptors in human liver during intraabdominal sepsis.
        Hepatology. 1994; 20: 638-642
        • Althoff T.F.
        • Offermanns S.
        G-protein-mediated signaling in vascular smooth muscle cells implications for vascular disease.
        J Mol Med (Berl). 2015; 93: 973-981
        • Schmidt C.
        • Höcherl K.
        • Kurt B.
        • et al.
        Blockade of multiple but not single cytokines abrogates downregulation of angiotensin II type-I receptors and anticipates septic shock.
        Cytokine. 2010; 49: 30-38
        • Landry D.W.
        • Oliver J.A.
        The pathogenesis of vasodilatory shock.
        N Engl J Med. 2001; 345: 588-595
        • Lange M.
        • Enkhbaatar P.
        • Nakano Y.
        • et al.
        Role of nitric oxide in shock: the large animal perspective.
        Front Biosci (Landmark Ed. 2009; 14: 1979-1989
        • Saha B.K.
        • Burns S.L.
        The Story of Nitric Oxide, Sepsis and Methylene Blue: A Comprehensive Pathophysiologic Review.
        Am J Med Sci. 2020; 360: 329-337
        • Carrel T.
        • Englberger L.
        • Mohacsi P.
        • et al.
        Low systemic vascular resistance after cardiopulmonary bypass: incidence, etiology, and clinical importance.
        J Card Surg. 2000; 15: 347-353
        • Omar S.
        • Zedan A.
        • Nugent K.
        Cardiac vasoplegia syndrome: pathophysiology, risk factors and treatment.
        Am J Med Sci. 2015; 349: 80-88
        • Arendse L.B.
        • Danser A.H.J.
        • Poglitsch M.
        • et al.
        Novel Therapeutic Approaches Targeting the Renin-Angiotensin System and Associated Peptides in Hypertension and Heart Failure.
        Pharmacol Rev. 2019; 71: 539-570
        • Papazisi O.
        • Palmen M.
        • Danser A.H.J.
        The Use of Angiotensin II for the Treatment of Post-cardiopulmonary Bypass Vasoplegia.
        Cardiovasc Drugs Ther. 2022; 36: 739-748
        • Lange M.
        • Van Aken H.
        • Westphal M.
        • et al.
        Role of vasopressinergic V1 receptor agonists in the treatment of perioperative catecholamine-refractory arterial hypotension.
        Best Pract Res Clin Anaesthesiol. 2008; 22: 369-381
        • Mekontso-Dessap A.
        • Houel R.
        • Soustelle C.
        • et al.
        Risk factors for post-cardiopulmonary bypass vasoplegia in patients with preserved left ventricular function.
        Ann Thorac Surg. 2001; 71: 1428-1432
        • Roshanov P.S.
        • Rochwerg B.
        • Patel A.
        • et al.
        Withholding versus Continuing Angiotensin-converting Enzyme Inhibitors or Angiotensin II Receptor Blockers before Noncardiac Surgery: An Analysis of the Vascular events In noncardiac Surgery patIents cOhort evaluatioN Prospective Cohort.
        Anesthesiology. 2017; 126: 16-27
        • Smith I.
        • Jackson I.
        Beta-blockers, calcium channel blockers, angiotensin converting enzyme inhibitors and angiotensin receptor blockers: should they be stopped or not before ambulatory anaesthesia?.
        Curr Opin Anaesthesiol. 2010; 23: 687-690
        • Asleh R.
        • Alnsasra H.
        • Daly R.C.
        • et al.
        Predictors and Clinical Outcomes of Vasoplegia in Patients Bridged to Heart Transplantation With Continuous- Flow Left Ventricular Assist Devices.
        J Am Heart Assoc. 2019; 8: e013108
        • Levin M.A.
        • Lin H.M.
        • Castillo J.G.
        • et al.
        Early on- cardiopulmonary bypass hypotension and other factors associated with vasoplegic syndrome.
        Circulation. 2009; 120: 1664-1671
        • Gomes W.J.
        • Carvalho A.C.
        • Palma J.H.
        • et al.
        Vasoplegic syndrome after open heart surgery.
        J Cardiovasc Surg (Torino). 1998; 39: 619-623
        • Wan S.
        • LeClerc J.L.
        • Vincent J.L.
        Inflammatory response to cardiopulmonary bypass: mechanisms involved and possible therapeutic strategies.
        Chest. 1997; 112: 676-692
        • Abou-Arab O.
        • Martineau L.
        • Bar S.
        • et al.
        Postoperative Vasoplegic Syndrome Is Associated With Impaired Endothelial Vasomotor Response in Cardiac Surgery: A Prospective, Observational Study.
        J Cardiothorac Vasc Anesth. 2018; 32: 2218-2224
        • Sun X.
        • Zhang L.
        • Hill P.C.
        • et al.
        Is incidence of postoperative vasoplegic syndrome different between off-pump and on-pump coronary artery bypass grafting surgery?.
        Eur J Cardiothorac Surg. 2008; 34: 820-825
        • Colson P.H.
        • Bernard C.
        • Struck J.
        • et al.
        Post cardiac surgery vasoplegia is associated with high preoperative copeptin plasma concentration.
        Crit Care. 2011; 15: R255
        • Sun X.
        • Boyce S.W.
        • Herr D.L.
        • et al.
        Is vasoplegic syndrome more prevalent with open-heart procedures compared with isolated on-pump CABG surgery?.
        Cardiovasc Revasc Med. 2011; 12: 203-209
        • Dayan V.
        • Cal R.
        • Giangrossi F.
        Risk factors for vasoplegia after cardiac surgery: a meta- analysis.
        Interact Cardiovasc Thorac Surg. 2019; 28: 838-844
        • Mehaffey J.H.
        • Johnston L.E.
        • Hawkins R.B.
        • et al.
        Methylene Blue for Vasoplegic Syndrome After Cardiac Operation: Early Administration Improves Survival.
        Ann Thorac Surg. 2017; 104: 36-41
        • Moller S.
        • Hobolth L.
        • Winkler C.
        • et al.
        Determinants of the hyperdynamic circulation and central hypovolaemia in cirrhosis.
        Gut. 2011; 60: 1254-1259
        • Moller S.
        • Bendtsen F.
        The pathophysiology of arterial vasodilatation and hyperdynamic circulation in cirrhosis.
        Liver Int. 2018; 38: 570-580
        • Aggarwal S.
        • Kang Y.
        • Freeman J.A.
        • et al.
        Postreperfusion syndrome: cardiovascular collapse following hepatic reperfusion during liver transplantation.
        Transpl Proc. 1987; 19: 54-55
        • van Rijn R.
        • Schurink I.J.
        • de Vries Y.
        • et al.
        Hypothermic Machine Perfusion in Liver Transplantation - A Randomized Trial.
        N Engl J Med. 2021; 384: 1391-1401
        • Ozal E.
        • Kuralay E.
        • Yildirim V.
        • et al.
        Preoperative methylene blue administration in patients at high risk for vasoplegic syndrome during cardiac surgery.
        Ann Thorac Surg. 2005; 79: 1615-1619
        • de Armas L.C.
        • Castillo Y.A.
        Is it possible to distinguish between vasoplegic syndrome and postreperfusion syndrome during liver graft reperfusion?.
        Anesth Analg. 2010; 110 ([author reply 970-1]): 969-970
        • Siniscalchi A.
        • Aurini L.
        • Spedicato S.
        • et al.
        Hyperdynamic circulation in cirrhosis: predictive factors and outcome following liver transplantation.
        Minerva Anestesiol. 2013; 79: 15-23
        • Ripoll C.
        • Catalina M.V.
        • Yotti R.
        • et al.
        Cardiac dysfunction during liver transplantation: incidence and preoperative predictors.
        Transplantation. 2008; 85: 1766-1772
        • Hilmi I.
        • Horton C.N.
        • Planinsic R.M.
        • et al.
        The impact of postreperfusion syndrome on short-term patient and liver allograft outcome in patients undergoing orthotopic liver transplantation.
        Liver Transpl. 2008; 14: 504-508
        • Paugam-Burtz C.
        • Kavafyan J.
        • Merckx P.
        • et al.
        Postreperfusion syndrome during liver transplantation for cirrhosis: outcome and predictors.
        Liver Transpl. 2009; 15: 522-529
        • Abbasoglu O.
        • Levy M.F.
        • Testa G.
        • et al.
        Does intraoperative hepatic artery flow predict arterial complications after liver transplantation?.
        Transplantation. 1998; 66: 598-601
        • Marin-Gomez L.M.
        • Bernal-Bellido C.
        • Alamo-Martinez J.M.
        • et al.
        Intraoperative hepatic artery blood flow predicts early hepatic artery thrombosis after liver transplantation.
        Transpl Proc. 2012; 44: 2078-2081
        • Kim P.
        • Klintmalm G.
        Importance of hepatic flows in liver transplantation.
        J Hepatol Gastroint Dis. 2016; 2: 2-3
        • Kilgannon J.H.
        • Roberts B.W.
        • Reihl L.R.
        • et al.
        Early arterial hypotension is common in the post-cardiac arrest syndrome and associated with increased in-hospital mortality.
        Resuscitation. 2008; 79: 410-416
        • Trzeciak S.
        • Jones A.E.
        • Kilgannon J.H.
        • et al.
        Significance of arterial hypotension after resuscitation from cardiac arrest.
        Crit Care Med. 2009; 37 ([quiz: 2904]): 2895-2903
        • Nolan J.P.
        • Neumar R.W.
        • Adrie C.
        • et al.
        Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A Scientific Statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke.
        Resuscitation. 2008; 79: 350-379
        • Fink K.
        • Schwarz M.
        • Feldbrügge L.
        • et al.
        Severe endothelial injury and subsequent repair in patients after successful cardiopulmonary resuscitation.
        Crit Care. 2010; 14: R104
        • Bro-Jeppesen J.
        • Johansson P.I.
        • Kjaergaard J.
        • et al.
        Level of systemic inflammation and endothelial injury is associated with cardiovascular dysfunction and vasopressor support in post-cardiac arrest patients.
        Resuscitation. 2017; 121: 179-186
        • Lemiale V.
        • Dumas F.
        • Mongardon N.
        • et al.
        Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort.
        Intensive Care Med. 2013; 39: 1972-1980
        • Dumas F.
        • Bougouin W.
        • Geri G.
        • et al.
        Emergency Percutaneous Coronary Intervention in Post-Cardiac Arrest Patients Without ST-Segment Elevation Pattern: Insights From the PROCAT II Registry.
        JACC Cardiovasc Interv. 2016; 9: 1011-1018
        • Jozwiak M.
        • Bougouin W.
        • Geri G.
        • et al.
        Post-resuscitation shock: recent advances in pathophysiology and treatment.
        Ann Intensive Care. 2020; 10: 170
        • Adrie C.
        • Adib-Conquy M.
        • Laurent I.
        • et al.
        Successful cardiopulmonary resuscitation after cardiac arrest as a "sepsis-like" syndrome.
        Circulation. 2002; 106: 562-568
        • Adrie C.
        • Laurent I.
        • Monchi M.
        • et al.
        Postresuscitation disease after cardiac arrest: a sepsis-like syndrome?.
        Curr Opin Crit Care. 2004; 10: 208-212
        • Peberdy M.A.
        • Callaway C.W.
        • Neumar R.W.
        • et al.
        Part 9: post- cardiac arrest care: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care.
        Circulation. 2010; 122: S768-S786
        • Argaud L.
        • Cour M.
        • Dubien P.Y.
        • et al.
        Effect of Cyclosporine in Nonshockable Out-of-Hospital Cardiac Arrest: The CYRUS Randomized Clinical Trial.
        JAMA Cardiol. 2016; 1: 557-565
        • Hästbacka J.
        • Kirkegaard H.
        • Søreide E.
        • et al.
        Severe or critical hypotension during post cardiac arrest care is associated with factors available on admission - a post hoc analysis of the TTH48 trial.
        J Crit Care. 2021; 61: 186-190
        • Issa M.S.
        • Grossestreuer A.V.
        • Patel H.
        • et al.
        Lactate and hypotension as predictors of mortality after in-hospital cardiac arrest.
        Resuscitation. 2021; 158: 208-214
        • Roberts B.W.
        • Kilgannon J.H.
        • Chansky M.E.
        • et al.
        Multiple organ dysfunction after return of spontaneous circulation in postcardiac arrest syndrome.
        Crit Care Med. 2013; 41: 1492-1501
        • Matsuda J.
        • Kato S.
        • Yano H.
        • et al.
        The Sequential Organ Failure Assessment (SOFA) score predicts mortality and neurological outcome in patients with post-cardiac arrest syndrome.
        J Cardiol. 2020; 76: 295-302
        • Martin G.S.
        • Mannino D.M.
        • Eaton S.
        • et al.
        The epidemiology of sepsis in the United States from 1979 through 2000.
        N Engl J Med. 2003; 348: 1546-1554
        • Singer M.
        • Deutschman C.S.
        • Seymour C.W.
        • et al.
        The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).
        Jama. 2016; 315: 801-810
        • Altavilla D.
        • Squadrito G.
        • Minutoli L.
        • et al.
        Inhibition of nuclear factor-kappaB activation by IRFI 042, protects against endotoxin-induced shock.
        Cardiovasc Res. 2002; 54: 684-693
        • Abraham E.
        Nuclear factor-kappaB and its role in sepsis-associated organ failure.
        J Infect Dis. 2003; 187: S364-S369
        • Donati A.
        • Conti G.
        • Loggi S.
        • et al.
        Does methylene blue administration to septic shock patients affect vascular permeability and blood volume?.
        Crit Care Med. 2002; 30: 2271-2277
        • Marshall J.C.
        Such stuff as dreams are made on: mediator-directed therapy in sepsis.
        Nat Rev Drug Discov. 2003; 2: 391-405
        • Bucher M.
        • Hobbhahn J.
        • Taeger K.
        • et al.
        Cytokine-mediated downregulation of vasopressin V(1A) receptors during acute endotoxemia in rats.
        Am J Physiol Regul Integr Comp Physiol. 2002; 282: R979-R984
        • Khanna A.
        • English S.W.
        • Wang X.S.
        • et al.
        Deane AM: Angiotensin II for the Treatment of Vasodilatory Shock.
        N Engl J Med. 2017; 377: 419-430
        • Forse R.A.
        • Saint-Vil D.
        • Gagner M.
        • et al.
        Intra-abdominal sepsis and adrenergic receptor response.
        J Trauma. 1992; 32: 564-569
        • Landry D.W.
        • Levin H.R.
        • Gallant E.M.
        • et al.
        Vasopressin deficiency contributes to the vasodilation of septic shock.
        Circulation. 1997; 95: 1122-1125
        • Rhodes A.
        • Evans L.E.
        • Alhazzani W.
        • et al.
        Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016.
        Intensive Care Med. 2017; 43: 304-377
        • Russell J.A.
        • Walley K.R.
        • Singer J.
        • et al.
        Vasopressin versus norepinephrine infusion in patients with septic shock.
        N Engl J Med. 2008; 358: 877-887
        • Avni T.
        • Lador A.
        • Lev S.
        • et al.
        Vasopressors for the Treatment of Septic Shock: Systematic Review and Meta-Analysis.
        PLoS One. 2015; 10: e0129305
        • De Backer D.
        • Biston P.
        • Devriendt J.
        • et al.
        Comparison of dopamine and norepinephrine in the treatment of shock.
        N Engl J Med. 2010; 362: 779-789
        • Dewachter P.
        • Mouton-Faivre C.
        • Emala C.W.
        Anaphylaxis and anesthesia: controversies and new insights.
        Anesthesiology. 2009; 111: 1141-1150
        • Evora P.R.
        • Simon M.R.
        Role of nitric oxide production in anaphylaxis and its relevance for the treatment of anaphylactic hypotension with methylene blue.
        Ann Allergy Asthma Immunol. 2007; 99: 306-313
        • Kawada T.
        • Ishibashi T.
        • Sasage H.
        • et al.
        Modification by LY 83583 and methylene blue of relaxation induced by nitric oxide, glyceryl trinitrate, sodium nitroprusside and atriopeptin in aortae of the rat, guinea-pig and rabbit.
        Gen Pharmacol. 1994; 25: 1361-1371
        • Mertes P.M.
        • Tajima K.
        • Regnier-Kimmoun M.A.
        • et al.
        Perioperative anaphylaxis.
        Med Clin North Am. 2010; 94 (xi): 761-789
        • Zheng F.
        • Barthel G.
        • Collange O.
        • et al.
        Methylene blue and epinephrine: a synergetic association for anaphylactic shock treatment.
        Crit Care Med. 2013; 41: 195-204
        • Hynninen M.
        • Valtonen M.
        • Markkanen H.
        • et al.
        Intramucosal pH and endotoxin and cytokine release in severe acute pancreatitis.
        Shock. 2000; 13: 79-82
        • Eklund A.
        • Leppäniemi A.
        • Kemppainen E.
        • et al.
        Vasodilatory shock in severe acute pancreatitis without sepsis: is there any place for hydrocortisone treatment?.
        Acta Anaesthesiol Scand. 2005; 49: 379-384
        • Gamelli R.L.
        • George M.
        • Sharp-Pucci M.
        • et al.
        Radisavljevic Z: Burn-induced nitric oxide release in humans.
        J Trauma. 1995; 39 ([discussion: 877–8]): 869-877
        • Carter E.A.
        • Derojas-Walker T.
        • Tamir S.
        • et al.
        Nitric oxide production is intensely and persistently increased in tissue by thermal injury.
        Biochem J. 1994; 304: 201-204
        • Church J.T.
        • Posluszny J.A.
        • Hemmila M.
        • et al.
        Methylene blue for burn-induced vasoplegia: case report and review of literature.
        J Burn Care Res. 2015; 36: e107-e111
        • Jaskille A.D.
        • Jeng J.C.
        • Jordan M.H.
        Methylene blue in the treatment of vasoplegia following severe burns.
        J Burn Care Res. 2008; 29: 408-410
        • Evans L.
        • Rhodes A.
        • Alhazzani W.
        • et al.
        Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021.
        Intensive Care Med. 2021; 47: 1181-1247
        • Ducrocq N.
        • Kimmoun A.
        • Furmaniuk A.
        • et al.
        Comparison of equipressor doses of norepinephrine, epinephrine, and phenylephrine on septic myocardial dysfunction.
        Anesthesiology. 2012; 116: 1083-1091
        • Krejci V.
        • Hiltebrand L.B.
        • Sigurdsson G.H.
        Effects of epinephrine, norepinephrine, and phenylephrine on microcirculatory blood flow in the gastrointestinal tract in sepsis.
        Crit Care Med. 2006; 34: 1456-1463
        • Morelli A.
        • Ertmer C.
        • Rehberg S.
        • et al.
        Phenylephrine versus norepinephrine for initial hemodynamic support of patients with septic shock: a randomized, controlled trial.
        Crit Care. 2008; 12: R143
        • Vail E.
        • Gershengorn H.B.
        • Hua M.
        • et al.
        Association Between US Norepinephrine Shortage and Mortality Among Patients With Septic Shock.
        Jama. 2017; 317: 1433-1442
        • Suzuki R.
        • Uchino S.
        • Sasabuchi Y.
        • et al.
        Dopamine use and its consequences in the intensive care unit: a cohort study utilizing the Japanese Intensive care PAtient Database.
        Crit Care. 2022; 26: 90
        • Annane D.
        • Vignon P.
        • Renault A.
        • et al.
        Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: a randomised trial.
        Lancet. 2007; 370: 676-684
        • Myburgh J.A.
        • Higgins A.
        • Jovanovska A.
        • et al.
        A comparison of epinephrine and norepinephrine in critically ill patients.
        Intensive Care Med. 2008; 34: 2226-2234
        • Levy B.
        • Bollaert P.E.
        • Charpentier C.
        • et al.
        Comparison of norepinephrine and dobutamine to epinephrine for hemodynamics, lactate metabolism, and gastric tonometric variables in septic shock: a prospective, randomized study.
        Intensive Care Med. 1997; 23: 282-287
        • Gordon A.C.
        • Mason A.J.
        • Thirunavukkarasu N.
        • et al.
        Effect of Early Vasopressin vs Norepinephrine on Kidney Failure in Patients With Septic Shock: The VANISH Randomized Clinical Trial.
        JAMA. 2016; 316: 509-518
        • Hajjar L.A.
        • Vincent J.L.
        • Barbosa Gomes Galas F.R.
        • et al.
        Vasopressin versus Norepinephrine in Patients with Vasoplegic Shock after Cardiac Surgery: The VANCS Randomized Controlled Trial.
        Anesthesiology. 2017; 126: 85-93
        • Hajjar L.A.
        • Zambolim C.
        • Belletti A.
        • et al.
        Vasopressin Versus Norepinephrine for the Management of Septic Shock in Cancer Patients: The VANCS II Randomized Clinical Trial.
        Crit Care Med. 2019; 47: 1743-1750
        • Kam P.C.
        • Williams S.
        • Yoong F.F.
        Vasopressin and terlipressin: pharmacology and its clinical relevance.
        Anaesthesia. 2004; 59: 993-1001
        • Ortoleva J.
        • Shapeton A.
        • Vanneman M.
        • et al.
        Vasoplegia During Cardiopulmonary Bypass: Current Literature and Rescue Therapy Options.
        J Cardiothorac Vasc Anesth. 2020; 34: 2766-2775
        • Basso N.
        • Terragno N.A.
        History about the discovery of the renin-angiotensin system.
        Hypertension. 2001; 38: 1246-1249
        • Jackson T.
        • Corke C.
        • Agar J.
        Enalapril overdose treated with angiotensin infusion.
        Lancet. 1993; 341: 703
        • Trilli L.E.
        • Johnson K.A.
        Lisinopril overdose and management with intravenous angiotensin II.
        Ann Pharmacother. 1994; 28: 1165-1168
        • Derrick J.R.
        • Anderson J.R.
        • Roland B.J.
        Adjunctive use of a biologic pressor agent, angiotensin, in management of shock.
        Circulation. 1962; 25: 263-267
        • Hall A.
        • Busse L.W.
        • Ostermann M.
        Angiotensin in Critical Care.
        Crit Care. 2018; 22: 69
        • Klijian A.
        • Khanna A.K.
        • Reddy V.S.
        • et al.
        Treatment With Angiotensin II Is Associated With Rapid Blood Pressure Response and Vasopressor Sparing in Patients With Vasoplegia After Cardiac Surgery: A Post-Hoc Analysis of Angiotensin II for the Treatment of High-Output Shock (ATHOS-3) Study.
        J Cardiothorac Vasc Anesth. 2021; 35: 51-58
        • Wieruszewski P.M.
        • Wittwer E.D.
        • Kashani K.B.
        • et al.
        Angiotensin II Infusion for Shock: A Multicenter Study of Postmarketing Use.
        Chest. 2021; 159: 596-605
        • Bauer S.R.
        • Sacha G.L.
        • Lam S.W.
        Safe Use of Vasopressin and Angiotensin II for Patients with Circulatory Shock.
        Pharmacotherapy. 2018; 38: 851-861
        • Busse L.W.
        • Nicholson G.
        • Nordyke R.J.
        • et al.
        Angiotensin II for the treatment of distributive shock in the intensive care unit: A US cost-effectiveness analysis.
        Int J Technol Assess Health Care. 2020; 36: 145-151
        • Maslow A.D.
        • Stearns G.
        • Butala P.
        • et al.
        The hemodynamic effects of methylene blue when administered at the onset of cardiopulmonary bypass.
        Anesth Analg. 2006; 103 (table of contents): 2-8
        • Hosseinian L.
        • Weiner M.
        • Levin M.A.
        • et al.
        Methylene Blue: Magic Bullet for Vasoplegia?.
        Anesth Analg. 2016; 122: 194-201
        • Shaefi S.
        • Mittel A.
        • Klick J.
        • et al.
        Vasoplegia After Cardiovascular Procedures-Pathophysiology and Targeted Therapy.
        J Cardiothorac Vasc Anesth. 2018; 32: 1013-1022
        • Clifton 2nd, J.
        • Leikin J.B.
        Methylene blue.
        Am J Ther. 2003; 10: 289-291
        • Pasin L.
        • Umbrello M.
        • Greco T.
        • et al.
        Methylene blue as a vasopressor: a meta-analysis of randomised trials.
        Crit Care Resusc. 2013; 15: 42-48
        • Kofler O.
        • Simbeck M.
        • Tomasi R.
        • et al.
        Early Use of Methylene Blue in Vasoplegic Syndrome: A 10-Year Propensity Score-Matched Cohort Study.
        J Clin Med. 2022; : 11
        • Petermichl W.
        • Gruber M.
        • Schoeller I.
        • et al.
        The additional use of methylene blue has a decatecholaminisation effect on cardiac vasoplegic syndrome after cardiac surgery.
        J Cardiothorac Surg. 2021; 16: 205
        • Feih J.T.
        • Rinka J.R.G.
        • Zundel M.T.
        Methylene Blue Monotherapy Compared With Combination Therapy With Hydroxocobalamin for the Treatment of Refractory Vasoplegic Syndrome: ARetrospective Cohort Study.
        J Cardiothorac Vasc Anesth. 2019; 33: 1301-1307
        • Mazzeffi M.
        • Hammer B.
        • Chen E.
        • et al.
        Methylene blue for postcardiopulmonary bypass vasoplegic syndrome: A cohort study.
        Ann Card Anaesth. 2017; 20: 178-181
      1. Dey L: Cyanokit® Package Insert. Dey, LP, Napa, CA 2006.

        • Mustafa A.K.
        • Sikka G.
        • Gazi S.K.
        • et al.
        Hydrogen sulfide as endothelium- derived hyperpolarizing factor sulfhydrates potassium channels.
        Circ Res. 2011; 109: 1259-1268
        • Sampaio A.L.
        • Dalli J.
        • Brancaleone V.
        • et al.
        Biphasic modulation of NOS expression, protein and nitrite products by hydroxocobalamin underlies its protective effect in endotoxemic shock: downstream regulation of COX-2, IL-1β, TNF-α, IL-6, and HMGB1 expression.
        Mediators Inflamm. 2013; 2013: 741804
        • Woehlck H.J.
        • Boettcher B.T.
        • Lauer K.K.
        • et al.
        Hydroxocobalamin for Vasoplegic Syndrome in Liver Transplantation: Restoration of Blood Pressure Without Vasospasm.
        A A Case Rep. 2016; 7: 247-250
        • Carr A.C.
        • Shaw G.M.
        • Fowler A.A.
        • et al.
        Ascorbate-dependent vasopressor synthesis: a rationale for vitamin C administration in severe sepsis and septic shock?.
        Crit Care. 2015; 19: 418
        • Doseděl M.
        • Jirkovský E.
        • Macáková K.
        • et al.
        On Behalf Of The O: Vitamin C-Sources, Physiological Role, Kinetics, Deficiency, Use, Toxicity, and Determination.
        Nutrients. 2021; 13
        • Oudemans-van Straaten H.M.
        • Spoelstra-de Man A.M.
        • de Waard M.C.
        Vitamin C revisited.
        Crit Care. 2014; 18: 460
        • Marik P.E.
        • Khangoora V.
        • Rivera R.
        • et al.
        Catravas J: Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Severe Sepsis and Septic Shock: A Retrospective Before- After Study.
        Chest. 2017; 151: 1229-1238
        • Fujii T.
        • Luethi N.
        • Young P.J.
        • et al.
        Effect of Vitamin C, Hydrocortisone, and Thiamine vs Hydrocortisone Alone on Time Alive and Free of Vasopressor Support Among Patients With Septic Shock: The VITAMINS Randomized Clinical Trial.
        Jama. 2020; 323: 423-431
        • Sevransky J.E.
        • Rothman R.E.
        • Hager D.N.
        • et al.
        Effect of Vitamin C, Thiamine, and Hydrocortisone on Ventilator- and Vasopressor-Free Days in Patients With Sepsis: The VICTAS Randomized Clinical Trial.
        Jama. 2021; 325: 742-750
        • Masse M.H.
        • Ménard J.
        • Sprague S.
        • et al.
        Lessening Organ dysfunction with VITamin C (LOVIT): protocol for a randomized controlled trial.
        Trials. 2020; 21: 42
        • Taylor E.N.
        • Stampfer M.J.
        • Curhan G.C.
        Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow-up.
        J Am Soc Nephrol. 2004; 15: 3225-3232
        • Alkhunaizi A.M.
        • Chan L.
        Secondary oxalosis: a cause of delayed recovery of renal function in the setting of acute renal failure.
        J Am Soc Nephrol. 1996; 7: 2320-2326
        • Levine M.
        • Rumsey S.C.
        • Daruwala R.
        • et al.
        Criteria and recommendations for vitamin C intake.
        Jama. 1999; 281: 1415-1423
        • Iwamoto N.
        • Kawaguchi T.
        • Horikawa K.
        • et al.
        Haemolysis induced by ascorbic acid in paroxysmal nocturnal haemoglobinuria.
        Lancet. 1994; 343: 357
        • Radomski M.W.
        • Palmer R.M.
        • Moncada S.
        Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells.
        Proc Natl Acad Sci U S A. 1990; 87: 10043-10047
        • Sprung C.L.
        • Annane D.
        • Keh D.
        • et al.
        Hydrocortisone therapy for patients with septic shock.
        N Engl J Med. 2008; 358: 111-124
        • Annane D.
        • Renault A.
        • Brun-Buisson C.
        • et al.
        Hydrocortisone plus Fludrocortisone for Adults with Septic Shock.
        N Engl J Med. 2018; 378: 809-818
        • Marcucci M.
        • Painter T.W.
        • Conen D.
        • et al.
        Rationale and design of the PeriOperative ISchemic Evaluation-3 (POISE-3): a randomized controlled trial evaluating tranexamic acid and a strategy to minimize hypotension in noncardiac surgery.
        Trials. 2022; 23: 101
        • Yang Y.F.
        • Zhu Y.J.
        • Long Y.Q.
        • et al.
        Withholding vs. Continuing Angiotensin-Converting Enzyme Inhibitors or Angiotensin Receptor Blockers Before Non-cardiac Surgery in Older Patients: Study Protocol for a Multicenter Randomized Controlled Trial.
        Front Med (Lausanne). 2021; 8: 654700